\(\hat{y}_i = \beta_0 + \beta_1 x_i\)
2025-10-22
\(\hat{y}_i = \beta_0 + \beta_1 x_i\)
mtcars
Call:
lm(formula = mpg ~ wt, data = mtcars)
Residuals:
Min 1Q Median 3Q Max
-4.5432 -2.3647 -0.1252 1.4096 6.8727
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 37.2851 1.8776 19.858 < 2e-16 ***
wt -5.3445 0.5591 -9.559 1.29e-10 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.046 on 30 degrees of freedom
Multiple R-squared: 0.7528, Adjusted R-squared: 0.7446
F-statistic: 91.38 on 1 and 30 DF, p-value: 1.294e-10
mtcars\[(x_i, y_i)\] \[x_i = wt_i\] \[and\] \[y_i = mpg_i\]
\[\hat{y}_i = \beta_0 + \beta_1 x_i\] \[e_i = y_i - \hat{y}_i\]
mtcarsmtcarsThe slope (\(\hat{\beta}_1\)) and intercept (\(\hat{\beta}_0\)) are estimated by:
\[ \hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})} {\sum_{i=1}^n (x_i - \bar{x})^2} \]
\[ \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} \]
These minimize the sum of squared residuals: \[ S(\beta_0, \beta_1) = \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2 \]
Variance of residuals:
\[ s^2 = \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{n - 2} \]
Standard error of slope:
\[ SE(\hat{\beta}_1) = \sqrt{\frac{s^2}{\sum_{i=1}^n (x_i - \bar{x})^2}} \]
Standard error of intercept:
\[ SE(\hat{\beta}_0) = \sqrt{s^2 \left( \frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right)} \]