# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and examine changes in the underlying trend in the downside risk of your portfolio in terms of kurtosis.
Choose your stocks.
from 2012-12-31 to present
symbols <- c("TSLA", "NVDA", "AMZN", "AAPL", "MSFT")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period ="monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
#Symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AAPL" "AMZN" "MSFT" "NVDA" "TSLA"
#Weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AAPL 0.25
## 2 AMZN 0.25
## 3 MSFT 0.2
## 4 NVDA 0.2
## 5 TSLA 0.1
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
reabalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 -0.00905
## 2 2013-02-28 -0.00289
## 3 2013-03-28 0.0204
## 4 2013-04-30 0.0720
## 5 2013-05-31 0.125
## 6 2013-06-28 -0.00475
## 7 2013-07-31 0.0748
## 8 2013-08-30 0.0683
## 9 2013-09-30 0.0645
## 10 2013-10-31 -0.00562
## # ℹ 50 more rows
portfolio_kurt_tidquant_builtin_percent <- portfolio_returns_tbl %>%
tq_performance(Ra = returns,
performance_fun = table.Stats) %>%
select(Kurtosis)
portfolio_returns_tbl %>%
ggplot(aes(x = returns)) +
geom_histogram()
### Expected Return vs Risk
# Transform data
mean_kurt_tbl <- asset_returns_tbl %>%
# Calculate mean returns and kurtosis for assets
group_by(asset) %>%
summarise(mean = mean(returns),
kurt = kurtosis(returns)) %>%
ungroup()
# Add portfolio stats
add_row(portfolio_returns_tbl %>%
summarise(mean = mean(returns),
kurt = kurtosis(returns)) %>%
mutate(asset = "Portfolio"))
## # A tibble: 2 × 3
## mean kurt asset
## <dbl> <dbl> <chr>
## 1 0.0296 -0.210 Portfolio
## 2 NA NA <NA>
# Plot
mean_kurt_tbl %>%
ggplot(aes(x = kurt, y = mean)) +
geom_point() +
ggrepel::geom_text_repel(aes(label = asset, color = asset)) +
# Formatting
theme(legend.position = "none") +
scale_y_continuous(labels = scales::percent_format(accuracy = 0.1)) +
#Labeling
labs(x = "Kurtosis",
y = "Expected Returns")
### Rolling 24 Month Kurtosis
# Assign a value for window
window = 24
# Transform data: Calculate 24 months rolling kurtosis
rolling_kurt_tbl <- portfolio_returns_tbl %>%
tq_mutate(select = returns,
mutate_fun = rollapply,
width = window,
FUN = kurtosis,
col_rename = "kurt") %>%
na.omit() %>%
select(-returns)
# Plot
rolling_kurt_tbl %>%
ggplot(aes(x= date, y = kurt)) +
geom_line(color = "cornflowerblue") +
# Formatting
scale_y_continuous(breaks = seq(-1, 4, 0.5)) +
scale_x_date(breaks = scales::pretty_breaks(n = 7)) +
theme(plot.title = element_text(hjust = 0.5)) +
# Labeling
labs(x = NULL,
y = "Kurtosis",
title = paste0("Rolling", window , " Month Kurtosis")) +
annotate(geom = "text", x = as.Date("2016-07-01"), y = 3,
size = 5, color = "red",
label = str_glue(""))
Has the downside risk of your portfolio increased or decreased over time? Explain using the plot you created. You may also refer to the skewness of the returns distribution you plotted in the previous assignment.
Over time, the donwside risk of my portfolio has increased over time because