ob=read.csv("D:\\Download\\Obesity data.csv")
head(ob)
## id gender height weight bmi age WBBMC wbbmd fat lean pcfat hypertension
## 1 1 F 150 49 21.8 53 1312 0.88 17802 28600 37.3 0
## 2 2 M 165 52 19.1 65 1309 0.84 8381 40229 16.8 1
## 3 3 F 157 57 23.1 64 1230 0.84 19221 36057 34.0 1
## 4 4 F 156 53 21.8 56 1171 0.80 17472 33094 33.8 1
## 5 5 M 160 51 19.9 54 1681 0.98 7336 40621 14.8 0
## 6 6 F 153 47 20.1 52 1358 0.91 14904 30068 32.2 1
## diabetes
## 1 1
## 2 0
## 3 0
## 4 0
## 5 0
## 6 0
library(table1)
##
## Attaching package: 'table1'
## The following objects are masked from 'package:base':
##
## units, units<-
table1(~age+ gender + height + weight +pcfat + hypertension +diabetes, data=ob)
| Overall (N=1217) |
|
|---|---|
| age | |
| Mean (SD) | 47.2 (17.3) |
| Median [Min, Max] | 48.0 [13.0, 88.0] |
| gender | |
| F | 862 (70.8%) |
| M | 355 (29.2%) |
| height | |
| Mean (SD) | 157 (7.98) |
| Median [Min, Max] | 155 [136, 185] |
| weight | |
| Mean (SD) | 55.1 (9.40) |
| Median [Min, Max] | 54.0 [34.0, 95.0] |
| pcfat | |
| Mean (SD) | 31.6 (7.18) |
| Median [Min, Max] | 32.4 [9.20, 48.4] |
| hypertension | |
| Mean (SD) | 0.507 (0.500) |
| Median [Min, Max] | 1.00 [0, 1.00] |
| diabetes | |
| Mean (SD) | 0.111 (0.314) |
| Median [Min, Max] | 0 [0, 1.00] |
ob$hyper = as.factor(ob$hypertension)
ob$diab = as.factor(ob$diabetes)
table1(~age+ gender + height + weight +pcfat + hypertension + hyper +diabetes + diab, data=ob)
| Overall (N=1217) |
|
|---|---|
| age | |
| Mean (SD) | 47.2 (17.3) |
| Median [Min, Max] | 48.0 [13.0, 88.0] |
| gender | |
| F | 862 (70.8%) |
| M | 355 (29.2%) |
| height | |
| Mean (SD) | 157 (7.98) |
| Median [Min, Max] | 155 [136, 185] |
| weight | |
| Mean (SD) | 55.1 (9.40) |
| Median [Min, Max] | 54.0 [34.0, 95.0] |
| pcfat | |
| Mean (SD) | 31.6 (7.18) |
| Median [Min, Max] | 32.4 [9.20, 48.4] |
| hypertension | |
| Mean (SD) | 0.507 (0.500) |
| Median [Min, Max] | 1.00 [0, 1.00] |
| hyper | |
| 0 | 600 (49.3%) |
| 1 | 617 (50.7%) |
| diabetes | |
| Mean (SD) | 0.111 (0.314) |
| Median [Min, Max] | 0 [0, 1.00] |
| diab | |
| 0 | 1082 (88.9%) |
| 1 | 135 (11.1%) |
table1(~age + height + weight +pcfat + hypertension + hyper +diabetes + diab|gender, data=ob)
| F (N=862) |
M (N=355) |
Overall (N=1217) |
|
|---|---|---|---|
| age | |||
| Mean (SD) | 48.6 (16.4) | 43.7 (18.8) | 47.2 (17.3) |
| Median [Min, Max] | 49.0 [14.0, 85.0] | 44.0 [13.0, 88.0] | 48.0 [13.0, 88.0] |
| height | |||
| Mean (SD) | 153 (5.55) | 165 (6.73) | 157 (7.98) |
| Median [Min, Max] | 153 [136, 170] | 165 [146, 185] | 155 [136, 185] |
| weight | |||
| Mean (SD) | 52.3 (7.72) | 62.0 (9.59) | 55.1 (9.40) |
| Median [Min, Max] | 51.0 [34.0, 95.0] | 62.0 [38.0, 95.0] | 54.0 [34.0, 95.0] |
| pcfat | |||
| Mean (SD) | 34.7 (5.19) | 24.2 (5.76) | 31.6 (7.18) |
| Median [Min, Max] | 34.7 [14.6, 48.4] | 24.6 [9.20, 39.0] | 32.4 [9.20, 48.4] |
| hypertension | |||
| Mean (SD) | 0.501 (0.500) | 0.521 (0.500) | 0.507 (0.500) |
| Median [Min, Max] | 1.00 [0, 1.00] | 1.00 [0, 1.00] | 1.00 [0, 1.00] |
| hyper | |||
| 0 | 430 (49.9%) | 170 (47.9%) | 600 (49.3%) |
| 1 | 432 (50.1%) | 185 (52.1%) | 617 (50.7%) |
| diabetes | |||
| Mean (SD) | 0.118 (0.323) | 0.0930 (0.291) | 0.111 (0.314) |
| Median [Min, Max] | 0 [0, 1.00] | 0 [0, 1.00] | 0 [0, 1.00] |
| diab | |||
| 0 | 760 (88.2%) | 322 (90.7%) | 1082 (88.9%) |
| 1 | 102 (11.8%) | 33 (9.3%) | 135 (11.1%) |
library(compareGroups)
createTable(compareGroups(gender ~ age + height + weight +pcfat + hyper + diab,data=ob))
##
## --------Summary descriptives table by 'gender'---------
##
## ________________________________________
## F M p.overall
## N=862 N=355
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
## age 48.6 (16.4) 43.7 (18.8) <0.001
## height 153 (5.55) 165 (6.73) <0.001
## weight 52.3 (7.72) 62.0 (9.59) <0.001
## pcfat 34.7 (5.19) 24.2 (5.76) <0.001
## hyper: 0.569
## 0 430 (49.9%) 170 (47.9%)
## 1 432 (50.1%) 185 (52.1%)
## diab: 0.238
## 0 760 (88.2%) 322 (90.7%)
## 1 102 (11.8%) 33 (9.30%)
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
A=c(14, 4, 10, 6, 3, 11, 12)
B=c(16, 17, 13, 12, 7, 16, 11, 8, 7)
shapiro.test(A)
##
## Shapiro-Wilk normality test
##
## data: A
## W = 0.92541, p-value = 0.5126
shapiro.test(B)
##
## Shapiro-Wilk normality test
##
## data: B
## W = 0.89641, p-value = 0.2319
t.test(A,B)
##
## Welch Two Sample t-test
##
## data: A and B
## t = -1.6, df = 12.554, p-value = 0.1345
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -7.813114 1.178194
## sample estimates:
## mean of x mean of y
## 8.571429 11.888889
library(simpleboot); library(boot)
## Simple Bootstrap Routines (1.1-8)
b= two.boot(A,B,mean,R=500)
boot.ci(b)
## Warning in boot.ci(b): bootstrap variances needed for studentized intervals
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 500 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = b)
##
## Intervals :
## Level Normal Basic
## 95% (-7.182, 0.317 ) (-6.977, 0.349 )
##
## Level Percentile BCa
## 95% (-6.984, 0.342 ) (-7.382, 0.039 )
## Calculations and Intervals on Original Scale
## Some BCa intervals may be unstable
b= two.boot(A,B,median,R=500)
boot.ci(b)
## Warning in boot.ci(b): bootstrap variances needed for studentized intervals
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 500 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = b)
##
## Intervals :
## Level Normal Basic
## 95% (-7.894, 6.206 ) (-8.000, 6.000 )
##
## Level Percentile BCa
## 95% (-10, 4 ) (-10, 3 )
## Calculations and Intervals on Original Scale
## Some BCa intervals may be unstable
wilcox.test(A, B, alternative = "two.sided")
## Warning in wilcox.test.default(A, B, alternative = "two.sided"): cannot compute
## exact p-value with ties
##
## Wilcoxon rank sum test with continuity correction
##
## data: A and B
## W = 17, p-value = 0.1372
## alternative hypothesis: true location shift is not equal to 0
boxplot(A, B,
names = c("Nhóm A", "Nhóm B"),
col = c("lightblue", "lightgreen"),
main = "So sánh trung vị giữa 2 nhóm (Wilcoxon test)")