# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and examine changes in the underlying trend in the downside risk of your portfolio in terms of kurtosis.
Choose your stocks.
from 2012-12-31 to present
symbols <- c("TSLA", "NVDA", "GOOGL", "ORCL", "JNJ")
prices <- tq_get(x = symbols,
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type= "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "GOOGL" "JNJ" "NVDA" "ORCL" "TSLA"
# weights
weight <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weight
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weight)
w_tbl
## # A tibble: 5 × 2
## symbols weight
## <chr> <dbl>
## 1 GOOGL 0.25
## 2 JNJ 0.25
## 3 NVDA 0.2
## 4 ORCL 0.2
## 5 TSLA 0.1
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset, returns_col = returns,
weights = w_tbl, rebalance_on = "months", col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0527
## 2 2013-02-28 0.0169
## 3 2013-03-28 0.0146
## 4 2013-04-30 0.0728
## 5 2013-05-31 0.0888
## 6 2013-06-28 -0.00817
## 7 2013-07-31 0.0626
## 8 2013-08-30 -0.00442
## 9 2013-09-30 0.0415
## 10 2013-10-31 0.0361
## # ℹ 50 more rows
portfolio_kurt_tidyquant_builtin_percent <- portfolio_returns_tbl %>%
tq_performance(Ra = returns,
performance_fun = table.Stats) %>%
select(Kurtosis)
portfolio_kurt_tidyquant_builtin_percent
## # A tibble: 1 × 1
## Kurtosis
## <dbl>
## 1 -0.585
# Assign value for window
window = 24
# Transform data: calculate 24 month rolling kurtosis
rolling_kurt_tbl <- portfolio_returns_tbl %>%
tq_mutate(select = returns,
mutate_fun = rollapply,
width = window,
FUN = kurtosis,
col_rename = "kurt") %>%
na.omit() %>%
select(-returns)
# Pot
rolling_kurt_tbl %>%
ggplot(aes(x = date, y = kurt)) +
geom_line(color = "cornflowerblue") +
# Formatting
scale_y_continuous(breaks = seq(-1, 4, 0.5)) +
scale_x_date(breaks = scales::pretty_breaks(n = 7)) +
theme(plot.title = element_text(hjust = 0.5)) +
# Labeling
labs(x = NULL,
y = "Kurtosis",
title = paste0("Rolling", window, "Month Kurtosis")) +
annotate(geom = "text", x = as.Date("2016-07-01"), y = 3, size = 5, color = "red", label = "Downside risk skyrocketed toward the end of 2017")
Has the downside risk of your portfolio increased or decreased over
time? Explain using the plot you created. You may also refer to the
skewness of the returns distribution you plotted in the previous
assignment.
The downside risk has increased over time.
A higher kurtosis indicates a greater probability of significant deviations from the mean, making it more unpredictable and risky than a lower one.