# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and examine changes in the underlying trend in the downside risk of your portfolio in terms of kurtosis.
Choose your stocks.
from 2012-12-31 to present
symbols <- c("AAPL", "NFLX", "GOOG", "TSLA", "NVDA")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(
select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AAPL" "GOOG" "NFLX" "NVDA" "TSLA"
#weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AAPL 0.25
## 2 GOOG 0.25
## 3 NFLX 0.2
## 4 NVDA 0.2
## 5 TSLA 0.1
?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.104
## 2 2013-02-28 0.0343
## 3 2013-03-28 0.0109
## 4 2013-04-30 0.0855
## 5 2013-05-31 0.0988
## 6 2013-06-28 -0.0394
## 7 2013-07-31 0.0925
## 8 2013-08-30 0.0665
## 9 2013-09-30 0.0442
## 10 2013-10-31 0.0483
## # ℹ 50 more rows
portfolio_kurt_tidyquant_builtin_percent <- portfolio_returns_tbl %>%
tq_performance(Ra = returns,
performance_fun = table.Stats) %>%
select(Kurtosis)
portfolio_kurt_tidyquant_builtin_percent
## # A tibble: 1 × 1
## Kurtosis
## <dbl>
## 1 -0.380
### Distribution of Portfolio Returns
portfolio_returns_tbl %>%
ggplot(aes(x = returns)) +
geom_histogram()
# Transform data
mean_kurt_tbl <- asset_returns_tbl %>%
# Calculate mean return and kurtosis for assets
group_by(asset) %>%
summarise(mean = mean(returns),
kurt = kurtosis(returns)) %>%
ungroup() %>%
# Add portfolio stats
add_row(portfolio_returns_tbl %>%
summarise(mean = mean(returns),
kurt = kurtosis(returns)) %>%
mutate(asset = "Portfolio"))
# Plot
mean_kurt_tbl %>%
ggplot(aes(x = kurt, y = mean)) +
geom_point() +
ggrepel::geom_label_repel(aes(label = asset, color = asset)) +
# Formatting
theme(legend.position = "none") +
scale_y_continuous(labels = scales::percent_format(accuracy = 0.1)) +
# Labeling
labs(x = "Kurtosis",
y = "Expected Returns")
#Assign a value for window
window = 24
# Transform data: calculate 24 month rolling kurtosis
rolling_kurt_tbl <- portfolio_returns_tbl %>%
tq_mutate(select = returns,
mutate_fun = rollapply,
width = window,
FUN = kurtosis,
col_rename = "kurt") %>%
na.omit() %>%
select(-returns)
# Plot
rolling_kurt_tbl %>%
ggplot(aes(x = date, y = kurt)) +
geom_line(color = "cornflowerblue") +
# Formatting
scale_y_continuous(breaks = seq(-1, 4, 0.5)) +
scale_x_date(breaks = scales::pretty_breaks(n = 7)) +
theme(plot.title = element_text(hjust = 0.5))+
#Labeling
labs(x = NULL,
y = "Kurtosis",
title = paste0("Rolling ", window, " Month Kurtosis")) +
annotate(geom = "text",
x = as.Date("2016-07-01"), y = 3,
size = 5, color = "red",
label = str_glue("Downside risk skyrocketed toward the end of 2017"))
```
Has the downside risk of your portfolio increased or decreased over time? Explain using the plot you created. You may also refer to the skewness of the returns distribution you plotted in the previous assignment.
The downside risk of my portfolio increased over time, as shown by the rising kurtosis toward the end of the period. This indicates that returns became more volatile, with a higher chance of extreme losses. The negative skewness from the previous analysis also supports this, showing that the portfolio experienced larger downside movements in later years.