library(tidyverse)
library(gtsummary)
library(broom)
library(gt)
ncd <- read.csv("ncd.csv")
# Previewdata
head(ncd)
Interpretation : The dataset contains information from six
participants, each described by 11 variables related to demographic and
health characteristics. Participants’ ages range from 31 to 56 years,
including both males and females, with most residing in urban areas. The
education levels vary from no formal education to higher education, and
occupations include service, unemployed, farmer, business, and retired
categories. Body Mass Index (BMI) values range from 18.9 to 30.1,
indicating participants with normal weight to obese levels. Systolic
blood pressure ranges from 92 to 188 mmHg, and diastolic pressure from
78 to 116 mmHg, suggesting variability in blood pressure status among
individuals. Some participants, such as those with systolic values above
140 mmHg and diastolic above 90 mmHg, may be considered hypertensive.
Overall, this dataset reflects diverse sociodemographic and health
profiles, which can be useful for analyzing associations between
lifestyle factors, residence, and blood pressure levels.
ncd %>%
tbl_summary()
| Characteristic |
N = 220 |
| participant_id |
111 (56, 166) |
| age |
50 (38, 67) |
| sex |
|
| Female |
118 (54%) |
| Male |
102 (46%) |
| residence |
|
| Rural |
133 (60%) |
| Urban |
87 (40%) |
| education |
|
| Higher |
50 (23%) |
| No formal |
25 (11%) |
| Primary |
66 (30%) |
| Secondary |
79 (36%) |
| occupation |
|
| Business |
46 (21%) |
| Farmer |
61 (28%) |
| Retired |
24 (11%) |
| Service |
66 (30%) |
| Unemployed |
23 (10%) |
| bmi |
25.4 (21.3, 28.3) |
| systolic_bp |
134 (114, 165) |
| diastolic_bp |
91 (76, 107) |
| diabetes |
51 (23%) |
| hypertension |
84 (38%) |
Interpretation: The descriptive summary of 2,201 participants
indicates a middle-aged population with nearly equal gender
distribution. Most participants (60%) live in rural areas, suggesting
that rural health characteristics dominate the dataset. Educational
levels are varied, but secondary and primary education are the most
common, reflecting moderate literacy among participants. Occupation data
show that a large share work in service or farming sectors, which is
typical for mixed rural-urban populations.
The median BMI of 25.4 suggests that many participants are
overweight, increasing the risk for chronic diseases. Blood pressure
levels (median systolic 134 mmHg, diastolic 91 mmHg) are slightly above
normal, indicating a tendency toward hypertension. Indeed, 38% of
participants are classified as hypertensive, and 23% have diabetes—both
substantial figures. These findings highlight a significant burden of
noncommunicable diseases, particularly hypertension and diabetes, and
suggest the need for preventive strategies focusing on healthy lifestyle
promotion and early screening in both rural and urban areas.
ncd %>%
tbl_summary(
by = residence)
| Characteristic |
Rural
N = 133 |
Urban
N = 87 |
| participant_id |
108 (64, 156) |
115 (44, 176) |
| age |
51 (38, 69) |
49 (37, 65) |
| sex |
|
|
| Female |
74 (56%) |
44 (51%) |
| Male |
59 (44%) |
43 (49%) |
| education |
|
|
| Higher |
33 (25%) |
17 (20%) |
| No formal |
13 (9.8%) |
12 (14%) |
| Primary |
38 (29%) |
28 (32%) |
| Secondary |
49 (37%) |
30 (34%) |
| occupation |
|
|
| Business |
20 (15%) |
26 (30%) |
| Farmer |
39 (29%) |
22 (25%) |
| Retired |
14 (11%) |
10 (11%) |
| Service |
42 (32%) |
24 (28%) |
| Unemployed |
18 (14%) |
5 (5.7%) |
| bmi |
25.5 (21.1, 28.3) |
24.9 (21.9, 28.4) |
| systolic_bp |
136 (114, 166) |
131 (111, 164) |
| diastolic_bp |
91 (74, 104) |
93 (77, 108) |
| diabetes |
34 (26%) |
17 (20%) |
| hypertension |
55 (41%) |
29 (33%) |
The dataset compares health and demographic characteristics between
rural (N = 1,331) and urban (N = 871) participants. The median age is
slightly higher in rural areas (51 years) than urban areas (49 years),
with females slightly more represented in rural (56%) than urban areas
(51%). Educational attainment differs, with a higher proportion of rural
participants having no formal education (9.8% vs. 14% in urban) and
higher education being more common in rural areas (25% vs. 20%).
Occupational patterns show rural participants are more often farmers
(29% vs. 25%), while urban participants are more engaged in business
(30% vs. 15%). Service employment is similar between groups, but
unemployment is higher in rural areas (14% vs. 5.7%). Median BMI is
slightly higher in rural participants (25.5 vs. 24.9), and blood
pressure levels indicate elevated values in both groups, with rural
median systolic BP higher (136 vs. 131 mmHg). Diabetes and hypertension
are more prevalent in rural areas (26% vs. 20% for diabetes, 41% vs. 33%
for hypertension), suggesting a higher burden of noncommunicable
diseases in rural populations. Overall, rural participants show slightly
higher risk factors for NCDs compared to urban counterparts.
model <- glm( factor(hypertension) ~ age + sex + bmi + residence + education + occupation + diabetes, data = ncd, family = binomial)
tbl_regression(model)
| Characteristic |
log(OR) |
95% CI |
p-value |
| age |
0.00 |
-0.02, 0.02 |
0.8 |
| sex |
|
|
|
| Female |
— |
— |
|
| Male |
0.30 |
-0.27, 0.87 |
0.3 |
| bmi |
-0.01 |
-0.07, 0.04 |
0.6 |
| residence |
|
|
|
| Rural |
— |
— |
|
| Urban |
-0.41 |
-1.0, 0.18 |
0.2 |
| education |
|
|
|
| Higher |
— |
— |
|
| No formal |
0.52 |
-0.48, 1.5 |
0.3 |
| Primary |
0.05 |
-0.72, 0.84 |
0.9 |
| Secondary |
0.09 |
-0.66, 0.85 |
0.8 |
| occupation |
|
|
|
| Business |
— |
— |
|
| Farmer |
-0.41 |
-1.2, 0.41 |
0.3 |
| Retired |
-0.56 |
-1.7, 0.49 |
0.3 |
| Service |
-0.12 |
-0.91, 0.67 |
0.8 |
| Unemployed |
-0.26 |
-1.4, 0.80 |
0.6 |
| diabetes |
|
|
|
| No |
— |
— |
|
| Yes |
0.06 |
-0.61, 0.71 |
0.9 |
| Abbreviations: CI = Confidence Interval, OR = Odds Ratio |
Logistic Regression Analysis: The logistic regression results show
the association between various participant characteristics and the
outcome of interest.
Age has a log odds ratio (log(OR)) of 0.00 (95% CI: -0.02, 0.02; p =
0.8), indicating no significant association with the outcome.
Sex: Males have a log(OR) of 0.30 (95% CI: -0.27, 0.87; p = 0.3)
compared to females, suggesting no statistically significant difference
between genders.
BMI shows a log(OR) of -0.01 (95% CI: -0.07, 0.04; p = 0.6),
indicating that BMI is not significantly associated with the
outcome.
Residence: Urban participants have a log(OR) of -0.41 (95% CI: -1.0,
0.18; p = 0.2) relative to rural participants, showing no significant
effect.
Education levels (no formal, primary, secondary) compared to higher
education all show non-significant associations with the outcome
(p-values 0.3–0.9).
Occupation categories (farmer, retired, service, unemployed) compared
to business also show no significant associations (p-values
0.3–0.8).
Diabetes status (yes vs. no) has a log(OR) of 0.06 (95% CI: -0.61,
0.71; p = 0.9), indicating no significant effect.
Overall, none of the variables analyzed show statistically
significant associations with the outcome, as all p-values are greater
than 0.05, and confidence intervals include the null value. This
suggests that in this dataset, these demographic, socioeconomic, and
health factors are not significantly linked to the outcome under
study.
LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpgYGB7cn0NCmxpYnJhcnkodGlkeXZlcnNlKQ0KbGlicmFyeShndHN1bW1hcnkpDQpsaWJyYXJ5KGJyb29tKQ0KbGlicmFyeShndCkNCmBgYA0KYGBge3J9DQpuY2QgPC0gcmVhZC5jc3YoIm5jZC5jc3YiKQ0KDQojIFByZXZpZXdkYXRhDQpoZWFkKG5jZCkNCmBgYA0KSW50ZXJwcmV0YXRpb24gOg0KVGhlIGRhdGFzZXQgY29udGFpbnMgaW5mb3JtYXRpb24gZnJvbSBzaXggcGFydGljaXBhbnRzLCBlYWNoIGRlc2NyaWJlZCBieSAxMSB2YXJpYWJsZXMgcmVsYXRlZCB0byBkZW1vZ3JhcGhpYyBhbmQgaGVhbHRoIGNoYXJhY3RlcmlzdGljcy4gUGFydGljaXBhbnRz4oCZIGFnZXMgcmFuZ2UgZnJvbSAzMSB0byA1NiB5ZWFycywgaW5jbHVkaW5nIGJvdGggbWFsZXMgYW5kIGZlbWFsZXMsIHdpdGggbW9zdCByZXNpZGluZyBpbiB1cmJhbiBhcmVhcy4gVGhlIGVkdWNhdGlvbiBsZXZlbHMgdmFyeSBmcm9tIG5vIGZvcm1hbCBlZHVjYXRpb24gdG8gaGlnaGVyIGVkdWNhdGlvbiwgYW5kIG9jY3VwYXRpb25zIGluY2x1ZGUgc2VydmljZSwgdW5lbXBsb3llZCwgZmFybWVyLCBidXNpbmVzcywgYW5kIHJldGlyZWQgY2F0ZWdvcmllcy4gQm9keSBNYXNzIEluZGV4IChCTUkpIHZhbHVlcyByYW5nZSBmcm9tIDE4LjkgdG8gMzAuMSwgaW5kaWNhdGluZyBwYXJ0aWNpcGFudHMgd2l0aCBub3JtYWwgd2VpZ2h0IHRvIG9iZXNlIGxldmVscy4gU3lzdG9saWMgYmxvb2QgcHJlc3N1cmUgcmFuZ2VzIGZyb20gOTIgdG8gMTg4IG1tSGcsIGFuZCBkaWFzdG9saWMgcHJlc3N1cmUgZnJvbSA3OCB0byAxMTYgbW1IZywgc3VnZ2VzdGluZyB2YXJpYWJpbGl0eSBpbiBibG9vZCBwcmVzc3VyZSBzdGF0dXMgYW1vbmcgaW5kaXZpZHVhbHMuIFNvbWUgcGFydGljaXBhbnRzLCBzdWNoIGFzIHRob3NlIHdpdGggc3lzdG9saWMgdmFsdWVzIGFib3ZlIDE0MCBtbUhnIGFuZCBkaWFzdG9saWMgYWJvdmUgOTAgbW1IZywgbWF5IGJlIGNvbnNpZGVyZWQgaHlwZXJ0ZW5zaXZlLiBPdmVyYWxsLCB0aGlzIGRhdGFzZXQgcmVmbGVjdHMgZGl2ZXJzZSBzb2Npb2RlbW9ncmFwaGljIGFuZCBoZWFsdGggcHJvZmlsZXMsIHdoaWNoIGNhbiBiZSB1c2VmdWwgZm9yIGFuYWx5emluZyBhc3NvY2lhdGlvbnMgYmV0d2VlbiBsaWZlc3R5bGUgZmFjdG9ycywgcmVzaWRlbmNlLCBhbmQgYmxvb2QgcHJlc3N1cmUgbGV2ZWxzLg0KDQpgYGB7cn0NCm5jZCAlPiUgDQogICB0Ymxfc3VtbWFyeSgpDQpgYGANCkludGVycHJldGF0aW9uOiANClRoZSBkZXNjcmlwdGl2ZSBzdW1tYXJ5IG9mIDIsMjAxIHBhcnRpY2lwYW50cyBpbmRpY2F0ZXMgYSBtaWRkbGUtYWdlZCBwb3B1bGF0aW9uIHdpdGggbmVhcmx5IGVxdWFsIGdlbmRlciBkaXN0cmlidXRpb24uIE1vc3QgcGFydGljaXBhbnRzICg2MCUpIGxpdmUgaW4gcnVyYWwgYXJlYXMsIHN1Z2dlc3RpbmcgdGhhdCBydXJhbCBoZWFsdGggY2hhcmFjdGVyaXN0aWNzIGRvbWluYXRlIHRoZSBkYXRhc2V0LiBFZHVjYXRpb25hbCBsZXZlbHMgYXJlIHZhcmllZCwgYnV0IHNlY29uZGFyeSBhbmQgcHJpbWFyeSBlZHVjYXRpb24gYXJlIHRoZSBtb3N0IGNvbW1vbiwgcmVmbGVjdGluZyBtb2RlcmF0ZSBsaXRlcmFjeSBhbW9uZyBwYXJ0aWNpcGFudHMuIE9jY3VwYXRpb24gZGF0YSBzaG93IHRoYXQgYSBsYXJnZSBzaGFyZSB3b3JrIGluIHNlcnZpY2Ugb3IgZmFybWluZyBzZWN0b3JzLCB3aGljaCBpcyB0eXBpY2FsIGZvciBtaXhlZCBydXJhbC11cmJhbiBwb3B1bGF0aW9ucy4NCg0KVGhlIG1lZGlhbiBCTUkgb2YgMjUuNCBzdWdnZXN0cyB0aGF0IG1hbnkgcGFydGljaXBhbnRzIGFyZSBvdmVyd2VpZ2h0LCBpbmNyZWFzaW5nIHRoZSByaXNrIGZvciBjaHJvbmljIGRpc2Vhc2VzLiBCbG9vZCBwcmVzc3VyZSBsZXZlbHMgKG1lZGlhbiBzeXN0b2xpYyAxMzQgbW1IZywgZGlhc3RvbGljIDkxIG1tSGcpIGFyZSBzbGlnaHRseSBhYm92ZSBub3JtYWwsIGluZGljYXRpbmcgYSB0ZW5kZW5jeSB0b3dhcmQgaHlwZXJ0ZW5zaW9uLiBJbmRlZWQsIDM4JSBvZiBwYXJ0aWNpcGFudHMgYXJlIGNsYXNzaWZpZWQgYXMgaHlwZXJ0ZW5zaXZlLCBhbmQgMjMlIGhhdmUgZGlhYmV0ZXPigJRib3RoIHN1YnN0YW50aWFsIGZpZ3VyZXMuIFRoZXNlIGZpbmRpbmdzIGhpZ2hsaWdodCBhIHNpZ25pZmljYW50IGJ1cmRlbiBvZiBub25jb21tdW5pY2FibGUgZGlzZWFzZXMsIHBhcnRpY3VsYXJseSBoeXBlcnRlbnNpb24gYW5kIGRpYWJldGVzLCBhbmQgc3VnZ2VzdCB0aGUgbmVlZCBmb3IgcHJldmVudGl2ZSBzdHJhdGVnaWVzIGZvY3VzaW5nIG9uIGhlYWx0aHkgbGlmZXN0eWxlIHByb21vdGlvbiBhbmQgZWFybHkgc2NyZWVuaW5nIGluIGJvdGggcnVyYWwgYW5kIHVyYmFuIGFyZWFzLg0KDQpgYGB7cn0NCm5jZCAlPiUNCiAgdGJsX3N1bW1hcnkoDQogICAgYnkgPSByZXNpZGVuY2UpDQpgYGANClRoZSBkYXRhc2V0IGNvbXBhcmVzIGhlYWx0aCBhbmQgZGVtb2dyYXBoaWMgY2hhcmFjdGVyaXN0aWNzIGJldHdlZW4gcnVyYWwgKE4gPSAxLDMzMSkgYW5kIHVyYmFuIChOID0gODcxKSBwYXJ0aWNpcGFudHMuIFRoZSBtZWRpYW4gYWdlIGlzIHNsaWdodGx5IGhpZ2hlciBpbiBydXJhbCBhcmVhcyAoNTEgeWVhcnMpIHRoYW4gdXJiYW4gYXJlYXMgKDQ5IHllYXJzKSwgd2l0aCBmZW1hbGVzIHNsaWdodGx5IG1vcmUgcmVwcmVzZW50ZWQgaW4gcnVyYWwgKDU2JSkgdGhhbiB1cmJhbiBhcmVhcyAoNTElKS4gRWR1Y2F0aW9uYWwgYXR0YWlubWVudCBkaWZmZXJzLCB3aXRoIGEgaGlnaGVyIHByb3BvcnRpb24gb2YgcnVyYWwgcGFydGljaXBhbnRzIGhhdmluZyBubyBmb3JtYWwgZWR1Y2F0aW9uICg5LjglIHZzLiAxNCUgaW4gdXJiYW4pIGFuZCBoaWdoZXIgZWR1Y2F0aW9uIGJlaW5nIG1vcmUgY29tbW9uIGluIHJ1cmFsIGFyZWFzICgyNSUgdnMuIDIwJSkuDQoNCk9jY3VwYXRpb25hbCBwYXR0ZXJucyBzaG93IHJ1cmFsIHBhcnRpY2lwYW50cyBhcmUgbW9yZSBvZnRlbiBmYXJtZXJzICgyOSUgdnMuIDI1JSksIHdoaWxlIHVyYmFuIHBhcnRpY2lwYW50cyBhcmUgbW9yZSBlbmdhZ2VkIGluIGJ1c2luZXNzICgzMCUgdnMuIDE1JSkuIFNlcnZpY2UgZW1wbG95bWVudCBpcyBzaW1pbGFyIGJldHdlZW4gZ3JvdXBzLCBidXQgdW5lbXBsb3ltZW50IGlzIGhpZ2hlciBpbiBydXJhbCBhcmVhcyAoMTQlIHZzLiA1LjclKS4gTWVkaWFuIEJNSSBpcyBzbGlnaHRseSBoaWdoZXIgaW4gcnVyYWwgcGFydGljaXBhbnRzICgyNS41IHZzLiAyNC45KSwgYW5kIGJsb29kIHByZXNzdXJlIGxldmVscyBpbmRpY2F0ZSBlbGV2YXRlZCB2YWx1ZXMgaW4gYm90aCBncm91cHMsIHdpdGggcnVyYWwgbWVkaWFuIHN5c3RvbGljIEJQIGhpZ2hlciAoMTM2IHZzLiAxMzEgbW1IZykuIERpYWJldGVzIGFuZCBoeXBlcnRlbnNpb24gYXJlIG1vcmUgcHJldmFsZW50IGluIHJ1cmFsIGFyZWFzICgyNiUgdnMuIDIwJSBmb3IgZGlhYmV0ZXMsIDQxJSB2cy4gMzMlIGZvciBoeXBlcnRlbnNpb24pLCBzdWdnZXN0aW5nIGEgaGlnaGVyIGJ1cmRlbiBvZiBub25jb21tdW5pY2FibGUgZGlzZWFzZXMgaW4gcnVyYWwgcG9wdWxhdGlvbnMuIE92ZXJhbGwsIHJ1cmFsIHBhcnRpY2lwYW50cyBzaG93IHNsaWdodGx5IGhpZ2hlciByaXNrIGZhY3RvcnMgZm9yIE5DRHMgY29tcGFyZWQgdG8gdXJiYW4gY291bnRlcnBhcnRzLg0KDQpgYGB7cn0NCm1vZGVsIDwtIGdsbSggZmFjdG9yKGh5cGVydGVuc2lvbikgfiBhZ2UgKyBzZXggKyBibWkgKyByZXNpZGVuY2UgKyBlZHVjYXRpb24gKyBvY2N1cGF0aW9uICsgZGlhYmV0ZXMsIGRhdGEgPSBuY2QsIGZhbWlseSA9IGJpbm9taWFsKQ0KdGJsX3JlZ3Jlc3Npb24obW9kZWwpDQpgYGANCg0KTG9naXN0aWMgUmVncmVzc2lvbiBBbmFseXNpczoNClRoZSBsb2dpc3RpYyByZWdyZXNzaW9uIHJlc3VsdHMgc2hvdyB0aGUgYXNzb2NpYXRpb24gYmV0d2VlbiB2YXJpb3VzIHBhcnRpY2lwYW50IGNoYXJhY3RlcmlzdGljcyBhbmQgdGhlIG91dGNvbWUgb2YgaW50ZXJlc3QuDQoNCkFnZSBoYXMgYSBsb2cgb2RkcyByYXRpbyAobG9nKE9SKSkgb2YgMC4wMCAoOTUlIENJOiAtMC4wMiwgMC4wMjsgcCA9IDAuOCksIGluZGljYXRpbmcgbm8gc2lnbmlmaWNhbnQgYXNzb2NpYXRpb24gd2l0aCB0aGUgb3V0Y29tZS4NCg0KU2V4OiBNYWxlcyBoYXZlIGEgbG9nKE9SKSBvZiAwLjMwICg5NSUgQ0k6IC0wLjI3LCAwLjg3OyBwID0gMC4zKSBjb21wYXJlZCB0byBmZW1hbGVzLCBzdWdnZXN0aW5nIG5vIHN0YXRpc3RpY2FsbHkgc2lnbmlmaWNhbnQgZGlmZmVyZW5jZSBiZXR3ZWVuIGdlbmRlcnMuDQoNCkJNSSBzaG93cyBhIGxvZyhPUikgb2YgLTAuMDEgKDk1JSBDSTogLTAuMDcsIDAuMDQ7IHAgPSAwLjYpLCBpbmRpY2F0aW5nIHRoYXQgQk1JIGlzIG5vdCBzaWduaWZpY2FudGx5IGFzc29jaWF0ZWQgd2l0aCB0aGUgb3V0Y29tZS4NCg0KUmVzaWRlbmNlOiBVcmJhbiBwYXJ0aWNpcGFudHMgaGF2ZSBhIGxvZyhPUikgb2YgLTAuNDEgKDk1JSBDSTogLTEuMCwgMC4xODsgcCA9IDAuMikgcmVsYXRpdmUgdG8gcnVyYWwgcGFydGljaXBhbnRzLCBzaG93aW5nIG5vIHNpZ25pZmljYW50IGVmZmVjdC4NCg0KRWR1Y2F0aW9uIGxldmVscyAobm8gZm9ybWFsLCBwcmltYXJ5LCBzZWNvbmRhcnkpIGNvbXBhcmVkIHRvIGhpZ2hlciBlZHVjYXRpb24gYWxsIHNob3cgbm9uLXNpZ25pZmljYW50IGFzc29jaWF0aW9ucyB3aXRoIHRoZSBvdXRjb21lIChwLXZhbHVlcyAwLjPigJMwLjkpLg0KDQpPY2N1cGF0aW9uIGNhdGVnb3JpZXMgKGZhcm1lciwgcmV0aXJlZCwgc2VydmljZSwgdW5lbXBsb3llZCkgY29tcGFyZWQgdG8gYnVzaW5lc3MgYWxzbyBzaG93IG5vIHNpZ25pZmljYW50IGFzc29jaWF0aW9ucyAocC12YWx1ZXMgMC4z4oCTMC44KS4NCg0KRGlhYmV0ZXMgc3RhdHVzICh5ZXMgdnMuIG5vKSBoYXMgYSBsb2coT1IpIG9mIDAuMDYgKDk1JSBDSTogLTAuNjEsIDAuNzE7IHAgPSAwLjkpLCBpbmRpY2F0aW5nIG5vIHNpZ25pZmljYW50IGVmZmVjdC4NCg0KT3ZlcmFsbCwgbm9uZSBvZiB0aGUgdmFyaWFibGVzIGFuYWx5emVkIHNob3cgc3RhdGlzdGljYWxseSBzaWduaWZpY2FudCBhc3NvY2lhdGlvbnMgd2l0aCB0aGUgb3V0Y29tZSwgYXMgYWxsIHAtdmFsdWVzIGFyZSBncmVhdGVyIHRoYW4gMC4wNSwgYW5kIGNvbmZpZGVuY2UgaW50ZXJ2YWxzIGluY2x1ZGUgdGhlIG51bGwgdmFsdWUuIFRoaXMgc3VnZ2VzdHMgdGhhdCBpbiB0aGlzIGRhdGFzZXQsIHRoZXNlIGRlbW9ncmFwaGljLCBzb2Npb2Vjb25vbWljLCBhbmQgaGVhbHRoIGZhY3RvcnMgYXJlIG5vdCBzaWduaWZpY2FudGx5IGxpbmtlZCB0byB0aGUgb3V0Y29tZSB1bmRlciBzdHVkeS4NCg==