summary(mod<-rma(z, zvar, mods = ~age, method = "REML", test = 't', data= dat))
## Warning: 5 studies with NAs omitted from model fitting.
## 
## Mixed-Effects Model (k = 68; tau^2 estimator: REML)
## 
##   logLik  deviance       AIC       BIC      AICc   
##  -2.1148    4.2296   10.2296   16.7986   10.6167   
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0556 (SE = 0.0105)
## tau (square root of estimated tau^2 value):             0.2358
## I^2 (residual heterogeneity / unaccounted variability): 95.95%
## H^2 (unaccounted variability / sampling variability):   24.69
## R^2 (amount of heterogeneity accounted for):            2.98%
## 
## Test for Residual Heterogeneity:
## QE(df = 66) = 1097.2556, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## F(df1 = 1, df2 = 66) = 2.6753, p-val = 0.1067
## 
## Model Results:
## 
##          estimate      se     tval  df    pval    ci.lb   ci.ub    
## intrcpt   -0.1048  0.1017  -1.0308  66  0.3064  -0.3079  0.0982    
## age        0.0049  0.0030   1.6356  66  0.1067  -0.0011  0.0109    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
describe(dat$age)
##    vars  n  mean    sd median trimmed   mad   min   max range skew kurtosis
## X1    1 68 32.37 10.02  32.55   31.57 11.24 18.05 62.41 44.36 0.69     0.17
##      se
## X1 1.22
predict(mod, 32.37+10.02)
## 
##    pred     se  ci.lb  ci.ub   pi.lb  pi.ub 
##  0.1041 0.0427 0.0189 0.1893 -0.3743 0.5825
predict(mod, 32.37)
## 
##    pred     se   ci.lb  ci.ub   pi.lb  pi.ub 
##  0.0547 0.0298 -0.0049 0.1143 -0.4198 0.5292
predict(mod, 32.37-10.02)
## 
##    pred     se   ci.lb  ci.ub   pi.lb  pi.ub 
##  0.0053 0.0422 -0.0790 0.0896 -0.4729 0.4835
rma(z, zvar, mods= ~spirituality, method = "REML", test = 't', data= dat)
## 
## Mixed-Effects Model (k = 73; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0429 (SE = 0.0080)
## tau (square root of estimated tau^2 value):             0.2071
## I^2 (residual heterogeneity / unaccounted variability): 95.71%
## H^2 (unaccounted variability / sampling variability):   23.29
## R^2 (amount of heterogeneity accounted for):            22.05%
## 
## Test for Residual Heterogeneity:
## QE(df = 71) = 1122.5475, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## F(df1 = 1, df2 = 71) = 18.2514, p-val < .0001
## 
## Model Results:
## 
##               estimate      se    tval  df    pval    ci.lb   ci.ub      
## intrcpt         0.0062  0.0281  0.2206  71  0.8260  -0.0498  0.0622      
## spirituality    0.2876  0.0673  4.2722  71  <.0001   0.1533  0.4218  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(mod2 <- rma(z, zvar, mods= ~wellbeing_type, method = "REML", test = 't', data= dat))
## 
## Mixed-Effects Model (k = 73; tau^2 estimator: REML)
## 
##   logLik  deviance       AIC       BIC      AICc   
##  -2.6737    5.3474   13.3474   22.3414   13.9628   
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0571 (SE = 0.0104)
## tau (square root of estimated tau^2 value):             0.2389
## I^2 (residual heterogeneity / unaccounted variability): 96.55%
## H^2 (unaccounted variability / sampling variability):   28.98
## R^2 (amount of heterogeneity accounted for):            6.42%
## 
## Test for Residual Heterogeneity:
## QE(df = 70) = 1548.9610, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## F(df1 = 2, df2 = 70) = 3.2666, p-val = 0.0440
## 
## Model Results:
## 
##                                estimate      se    tval  df    pval    ci.lb 
## intrcpt                          0.0536  0.0459  1.1666  70  0.2473  -0.0380 
## wellbeing_type1=externalizing    0.0585  0.0675  0.8672  70  0.3888  -0.0761 
## wellbeing_type1=internalizing    0.1883  0.0740  2.5456  70  0.0131   0.0408 
##                                 ci.ub    
## intrcpt                        0.1452    
## wellbeing_type1=externalizing  0.1932    
## wellbeing_type1=internalizing  0.3358  * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
predict(mod2, c(1, 0))
## 
##    pred     se  ci.lb  ci.ub   pi.lb  pi.ub 
##  0.1121 0.0495 0.0135 0.2108 -0.3744 0.5987
predict(mod2, c(0, 1))
## 
##    pred     se  ci.lb  ci.ub   pi.lb  pi.ub 
##  0.2419 0.0580 0.1262 0.3575 -0.2484 0.7321
predict(mod2, c(0, 0))
## 
##    pred     se   ci.lb  ci.ub   pi.lb  pi.ub 
##  0.0536 0.0459 -0.0380 0.1452 -0.4316 0.5387