Introduction
Questions
Variation
ggplot(data = mydata) +
geom_bar(mapping = aes(x = grade))

Visualizing distributions
ggplot(data = mydata) +
geom_histogram(mapping = aes(x = date))
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(data = mydata, mapping = aes(x = date, colour = grade)) +
geom_freqpoly()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Typical values
ggplot(data = mydata, mapping = aes(x = date)) +
geom_histogram(binwidth = 0.5)

Unusual values
mydata %>%
ggplot(aes(date)) +
geom_histogram(binwidth = 1) +
coord_cartesian(ylim = c(00, 200))

Missing Values
mydata %>%
# filter(y < 3 | y > 20) %>%
mutate(y = ifelse(date < 1994 | date > 2005, NA, date)) %>%
#Plot
ggplot(aes(x = date, y = price)) +
geom_point()

Covariation
A categorical and continuous variable
mydata %>%
ggplot(aes(x = grade, y = price)) +
geom_boxplot()

Two categorical variables
mydata %>%
count(price, grade) %>%
ggplot(mapping= aes(x = price, y = grade, fill = n)) +
geom_tile()

Two continous variables
ggplot(data = mydata) +
geom_point(mapping = aes(x = grade, y = price), alpha = 2 / 100)

ggplot(data = mydata) +
geom_hex(mapping = aes(x = grade, y = price))

Patterns and models
ggplot(data = mydata) +
geom_point(mapping = aes(x = grade, y = price))
