Loading library
library(readxl)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.1 ✔ stringr 1.5.2
## ✔ ggplot2 4.0.0 ✔ tibble 3.3.0
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.1.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(writexl)
library(scales)
##
## Attaching package: 'scales'
##
## The following object is masked from 'package:purrr':
##
## discard
##
## The following object is masked from 'package:readr':
##
## col_factor
summary(1)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1 1 1 1 1 1
Importing Dataset
bikeshops_tbl <- read_excel("bikeshops.xlsx")
orderlines_tbl <- read_excel("orderlines.xlsx")
## New names:
## • `` -> `...1`
bike_orderlines_tbl <- read_excel("bike_orderlines.xlsx")
summary(2)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2 2 2 2 2 2
Revenue by category
revenue_by_category2 <- bike_orderlines_tbl %>%
group_by(category_2) %>%
summarise(revenue = sum(total_price, na.rm = TRUE)) %>%
arrange(desc(revenue))
summary (3)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 3 3 3 3 3 3
Plot with ggplot2
ggplot(revenue_by_category2, aes(x = revenue,
y = reorder(category_2, revenue))) +
geom_col(fill = "blue") +
labs(
x = "revenue",
y = "category_2",
title = "Revenue by Bike Subcategory"
) +
scale_x_continuous(labels = label_number()) + # e.g. 1e+07 → 10M
theme_minimal()

summary (4)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 4 4 4 4 4 4