Loading library
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(readr)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ forcats 1.0.1 ✔ stringr 1.5.2
## ✔ ggplot2 4.0.0 ✔ tibble 3.3.0
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.1.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
summary(1)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1 1 1 1 1 1
Importing Dataset
stock_df <- read_csv("stock_df.csv")
## Rows: 5 Columns: 106
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): company
## dbl (105): 2019_week1, 2019_week2, 2019_week3, 2019_week4, 2019_week5, 2019_...
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
summary(2)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2 2 2 2 2 2
Wide to long
stock_df_long <- stock_df %>% pivot_longer(cols = !company,
names_to = c("year", "week"),
names_sep = "_week",
names_transform = list(year = as.integer, week = as.integer),
values_to = "price"
)
stock_df_long
## # A tibble: 525 × 4
## company year week price
## <chr> <int> <int> <dbl>
## 1 Amazon 2019 1 1848.
## 2 Amazon 2019 2 1641.
## 3 Amazon 2019 3 1696.
## 4 Amazon 2019 4 1671.
## 5 Amazon 2019 5 1626.
## 6 Amazon 2019 6 1588.
## 7 Amazon 2019 7 1608.
## 8 Amazon 2019 8 1632.
## 9 Amazon 2019 9 1672.
## 10 Amazon 2019 10 1621.
## # ℹ 515 more rows
summary(3)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 3 3 3 3 3 3