install.packages(“readxl”) install.packages(“tidyverse”) library(tidyverse) library(readxl) library(writexl) bikeshops_tbl <- read_excel(“downloads/bikeshops.xlsx”) orderlines_tbl <- read_excel(“downloads/orderlines.xlsx”)

bike_orderlines_tbl <- read_csv(“downloads/bike_orderlines.csv”) revenue_by_category2 <- bike_orderlines_tbl %>% group_by(category_2) %>% summarise(revenue = sum(total_price, na.rm = TRUE)) %>% arrange(desc(revenue))

2. Plot with ggplot2

ggplot(revenue_by_category2, aes(x = revenue, y = reorder(category_2, revenue))) + geom_col(fill = “blue”) + labs( x = “revenue”, y = “category_2”, title = “Revenue by Bike Subcategory” ) + scale_x_continuous(labels = label_number()) + # e.g. 1e+07 → 10M theme_minimal()