library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
data_kesehatan <- readxl::read_excel("data_kesehatan.xlsx")
head(data_kesehatan)
## # A tibble: 6 × 10
##      id  umur jenis_kelamin tinggi_badan berat_badan gula_darah tekanan_sistolik
##   <dbl> <dbl> <chr>                <dbl>       <dbl>      <dbl>            <dbl>
## 1     1    33 Perempuan             160.        62.9       80.1             129.
## 2     2    59 Perempuan             153.        54.7       79.2             109.
## 3     3    39 Perempuan             156.        66.8       99.6             133.
## 4     4    64 Laki-laki             174.        54.8       97.4             109.
## 5     5    67 Perempuan             164.        62.2       49.0             129.
## 6     6    20 Perempuan             150.        61.2      121.              136.
## # ℹ 3 more variables: tekanan_diastolik <dbl>, kolesterol <dbl>,
## #   skor_kesehatan <dbl>
aggregate(umur ~ jenis_kelamin, data = data_kesehatan, mean)
##   jenis_kelamin     umur
## 1     Laki-laki 44.02778
## 2     Perempuan 44.65217
aggregate(tinggi_badan ~ jenis_kelamin, data = data_kesehatan, mean)
##   jenis_kelamin tinggi_badan
## 1     Laki-laki     171.0215
## 2     Perempuan     159.6470
aggregate(skor_kesehatan ~ umur, data = data_kesehatan, mean)
##    umur skor_kesehatan
## 1    18      100.00000
## 2    19       92.51802
## 3    20       91.72576
## 4    21       80.16160
## 5    22       85.38529
## 6    23       98.66898
## 7    24       88.32077
## 8    25       91.94987
## 9    26       86.28426
## 10   27      100.00000
## 11   28       84.47480
## 12   29       87.68316
## 13   30       92.36140
## 14   31       91.38097
## 15   32       82.08423
## 16   33       93.63693
## 17   34       83.99066
## 18   35       93.42043
## 19   36       95.68925
## 20   37       94.95943
## 21   38       84.04715
## 22   39       96.41401
## 23   40       85.38979
## 24   41       90.32985
## 25   42       88.82483
## 26   43       91.26205
## 27   44       89.89671
## 28   45       89.24945
## 29   46       92.32851
## 30   47       85.30152
## 31   48       91.11692
## 32   49       77.93252
## 33   50       83.08693
## 34   51       89.45276
## 35   52       90.56225
## 36   53       87.80328
## 37   54       92.58371
## 38   55       91.43276
## 39   56       86.92382
## 40   57       89.55623
## 41   59       94.78531
## 42   60       83.70573
## 43   61       92.40607
## 44   62       92.07595
## 45   63       91.68226
## 46   64       93.37222
## 47   65       88.68294
## 48   66      100.00000
## 49   67       96.50702
## 50   68       80.90101
## 51   69       79.14937
## 52   70       80.64646
aggregate(skor_kesehatan ~ kolesterol, data = data_kesehatan, mean)
##     kolesterol skor_kesehatan
## 1     98.56417      100.00000
## 2    116.12275      100.00000
## 3    125.12176       99.78350
## 4    127.15556      100.00000
## 5    127.19082       76.14837
## 6    128.66569      100.00000
## 7    131.80180       96.46025
## 8    133.55706      100.00000
## 9    137.46094      100.00000
## 10   138.68861      100.00000
## 11   140.40233      100.00000
## 12   140.40553      100.00000
## 13   141.97480       85.92333
## 14   143.62250      100.00000
## 15   144.54028      100.00000
## 16   147.44299       96.40854
## 17   149.71127      100.00000
## 18   151.23973      100.00000
## 19   152.45727       96.15151
## 20   152.65247      100.00000
## 21   153.14666      100.00000
## 22   153.50958      100.00000
## 23   154.72905      100.00000
## 24   155.97936       85.34060
## 25   155.99620       80.16160
## 26   156.37965       96.80100
## 27   156.96755      100.00000
## 28   157.27394       84.71513
## 29   157.63963      100.00000
## 30   157.70810      100.00000
## 31   157.84759       88.14031
## 32   157.88288       82.25335
## 33   157.95985       85.99595
## 34   158.95576       89.39700
## 35   159.06507      100.00000
## 36   160.25810      100.00000
## 37   160.31403      100.00000
## 38   162.05932      100.00000
## 39   162.56209      100.00000
## 40   163.05936       90.56092
## 41   165.20358      100.00000
## 42   165.36224       86.55135
## 43   165.48475      100.00000
## 44   165.73735      100.00000
## 45   167.70232       90.70285
## 46   168.95484       96.11934
## 47   169.97974      100.00000
## 48   170.00037      100.00000
## 49   170.31271      100.00000
## 50   172.18406      100.00000
## 51   172.52414      100.00000
## 52   172.87288      100.00000
## 53   173.33041       97.92177
## 54   173.57117       94.09372
## 55   174.01196      100.00000
## 56   174.19194       94.20821
## 57   174.53766       91.99147
## 58   174.71790       97.46217
## 59   174.78237       88.97758
## 60   174.88399      100.00000
## 61   175.73155       75.93673
## 62   175.90611       95.88734
## 63   175.90637      100.00000
## 64   176.38007       88.52949
## 65   176.55297      100.00000
## 66   176.98302       97.35104
## 67   177.88869       79.76589
## 68   178.28878      100.00000
## 69   178.61753       94.47592
## 70   178.74488       64.11414
## 71   179.20053       85.38529
## 72   179.83894       98.63909
## 73   179.86958      100.00000
## 74   180.65576       87.27387
## 75   181.04251       96.06106
## 76   181.28296       90.69250
## 77   181.32930      100.00000
## 78   182.33473       91.56964
## 79   183.37947       86.22689
## 80   183.68726       79.65326
## 81   183.71655       75.39378
## 82   184.22319       94.46348
## 83   184.59438       98.97290
## 84   184.95677      100.00000
## 85   185.06641       91.28614
## 86   185.50631      100.00000
## 87   185.84155       93.74989
## 88   185.99889       98.94197
## 89   188.02648       85.38622
## 90   188.19960       98.40598
## 91   188.41602       98.51579
## 92   188.69942       87.74158
## 93   188.86127       93.04345
## 94   188.92180      100.00000
## 95   188.96219       87.39012
## 96   188.99285      100.00000
## 97   189.46409      100.00000
## 98   189.67827       65.83611
## 99   189.82547      100.00000
## 100  190.16373       97.28383
## 101  190.32886       87.53790
## 102  191.03583       90.67423
## 103  191.64378      100.00000
## 104  192.61733       87.49844
## 105  192.68540      100.00000
## 106  192.85398       67.80169
## 107  193.21566      100.00000
## 108  193.65011       92.80241
## 109  194.08886      100.00000
## 110  194.23828       81.77373
## 111  194.55497       99.33587
## 112  194.93556       97.88776
## 113  195.12719       78.65485
## 114  195.76001      100.00000
## 115  196.00441       72.24570
## 116  196.28898      100.00000
## 117  197.61179       99.28702
## 118  197.69678       84.67545
## 119  197.77654      100.00000
## 120  198.31034       90.91384
## 121  198.78037       85.45402
## 122  199.23180       89.48931
## 123  200.58479       74.94486
## 124  202.83599       69.44558
## 125  203.01028       86.68373
## 126  203.03405       90.45487
## 127  203.05271       87.39251
## 128  203.45821       76.98552
## 129  203.49810       99.83833
## 130  203.83577       71.20314
## 131  204.26177       96.82670
## 132  204.48217       96.85953
## 133  205.17100       88.01014
## 134  205.27618      100.00000
## 135  206.21508      100.00000
## 136  207.05196       90.62093
## 137  207.09337       78.62644
## 138  208.51751       81.22331
## 139  208.76055      100.00000
## 140  209.30406       96.87835
## 141  209.69540      100.00000
## 142  212.10057       85.65371
## 143  212.61749      100.00000
## 144  214.15159       75.20394
## 145  214.70833       92.40607
## 146  214.88722       86.99939
## 147  215.60847       60.08132
## 148  216.21006       95.43306
## 149  216.34751       84.13958
## 150  216.46704       97.54007
## 151  216.48768       71.93331
## 152  216.64221       83.79867
## 153  216.98067      100.00000
## 154  216.98634       96.66257
## 155  217.08629       62.26762
## 156  217.44896       95.02224
## 157  217.70140       88.37807
## 158  218.57670       45.44594
## 159  219.69107       59.51184
## 160  219.94870      100.00000
## 161  220.37612       92.00174
## 162  220.69605       68.50658
## 163  220.84522       69.50376
## 164  220.95768       90.72733
## 165  221.01249       83.77710
## 166  221.31674       90.30077
## 167  221.51779       99.23040
## 168  223.20512       88.64576
## 169  223.27056       87.91820
## 170  223.40088       95.54148
## 171  223.48819       84.01331
## 172  224.32788       48.51474
## 173  227.83105      100.00000
## 174  228.29805       87.17492
## 175  229.86324       93.77802
## 176  231.07300       78.69969
## 177  231.25826       85.76841
## 178  231.33028       96.88081
## 179  231.43301       78.60337
## 180  232.30718       75.01840
## 181  232.61726       80.64646
## 182  232.70377       57.96087
## 183  233.50384       91.65975
## 184  235.72428       74.48061
## 185  236.97443       54.22224
## 186  237.95463       84.84621
## 187  238.12637       53.51686
## 188  238.49733       81.59355
## 189  238.67979       65.12971
## 190  240.26716       76.40171
## 191  240.29567       67.08839
## 192  242.93638       68.02514
## 193  243.71273       79.28644
## 194  246.05967       88.18862
## 195  246.48519       80.02805
## 196  248.19268       84.35429
## 197  260.95167       86.60551
## 198  264.36237       80.21044
## 199  267.31804       73.44250
## 200  288.71552       77.75112