data_kesehatan <- read.csv("data_kesehatan.csv")
head(data_kesehatan)
## X id umur jenis_kelamin tinggi_badan berat_badan gula_darah tekanan_sistolik
## 1 1 1 33 Perempuan 159.5587 62.85027 80.08403 129.2978
## 2 2 2 59 Perempuan 152.9881 54.73592 79.20090 108.6373
## 3 3 3 39 Perempuan 156.1915 66.84162 99.64040 132.7729
## 4 4 4 64 Laki-laki 173.8024 54.83932 97.35650 108.7811
## 5 5 5 67 Perempuan 164.0242 62.21020 49.01314 129.4536
## 6 6 6 20 Perempuan 150.0967 61.15284 120.81147 136.4499
## tekanan_diastolik kolesterol skor_kesehatan
## 1 69.13882 181.3293 100.00000
## 2 73.34697 209.6954 100.00000
## 3 87.14848 176.3801 88.52949
## 4 75.68339 172.1841 100.00000
## 5 82.27615 138.6886 100.00000
## 6 92.94946 183.7165 75.39378
table(data_kesehatan$jenis_kelamin)
##
## Laki-laki Perempuan
## 108 92
mean(data_kesehatan$umur)
## [1] 44.315
mean(data_kesehatan$tinggi_badan[data_kesehatan$jenis_kelamin == "Laki-laki"])
## [1] 171.0215
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
data_kesehatan %>%
arrange(skor_kesehatan) %>%
select(skor_kesehatan) %>%
slice_head(n = 5)
## skor_kesehatan
## 1 45.44594
## 2 48.51474
## 3 53.51686
## 4 54.22224
## 5 57.96087
library(dplyr)
data_kesehatan %>%
arrange (berat_badan)%>%
select(berat_badan) %>%
head(n=10)
## berat_badan
## 1 39.93666
## 2 44.59884
## 3 45.11818
## 4 45.21222
## 5 45.99146
## 6 46.51267
## 7 47.02513
## 8 47.89367
## 9 48.01041
## 10 48.88413