library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
dfk<-read.csv("data_kesehatan.csv")
dfk<-dfk %>% 
  mutate(BMI=berat_badan/(tinggi_badan*tinggi_badan*(0.0001)))
f<-dfk %>% 
  filter(BMI>30) %>% 
summarise(mean(skor_kesehatan))

n<-dfk %>% 
  filter(umur<30) %>% 
  summarise(mean(skor_kesehatan))
c<-dfk %>% 
  filter(umur>=30 & umur<=50) %>% 
  summarise(mean(skor_kesehatan))
d<-dfk %>% 
  filter(umur>50) %>% 
  summarise(mean(skor_kesehatan))

dfk<-dfk %>% 
  mutate(tekanan=tekanan_sistolik/tekanan_diastolik)
z<-dfk %>% 
  filter(gula_darah<110, kolesterol<200, tekanan<130/85)
z
##      X  id umur jenis_kelamin tinggi_badan berat_badan gula_darah
## 1    3   3   39     Perempuan     156.1915    66.84162   99.64040
## 2    4   4   64     Laki-laki     173.8024    54.83932   97.35650
## 3   14  14   48     Perempuan     159.2637    61.65035  109.38064
## 4   15  15   23     Perempuan     157.5179    62.21498   95.77506
## 5   17  17   31     Perempuan     159.4424    58.44678  104.55085
## 6   26  26   55     Perempuan     157.2980    55.26486  104.57114
## 7   31  31   68     Laki-laki     183.6871    63.21497   76.06130
## 8   33  33   54     Perempuan     161.8002    66.31568   80.91102
## 9   36  36   43     Perempuan     153.5355    62.27103   77.26214
## 10  41  41   25     Laki-laki     164.4796    61.65812   79.55305
## 11  51  51   20     Laki-laki     167.3708    50.61495  106.62869
## 12  52  52   41     Perempuan     166.2798    59.22070   96.20307
## 13  57  57   25     Laki-laki     177.5656    80.20253   83.87094
## 14  58  58   57     Laki-laki     174.4153    75.38482  101.09106
## 15  62  62   23     Perempuan     157.9092    61.13967   87.74024
## 16  65  65   60     Perempuan     153.4433    58.69372   96.75034
## 17  74  74   18     Perempuan     158.5639    67.22813   88.35197
## 18  83  83   40     Laki-laki     172.7022    62.72616  104.61267
## 19  89  89   64     Laki-laki     168.4666    66.78675   90.94599
## 20  90  90   27     Perempuan     157.7143    63.16237   65.03255
## 21  97  97   59     Perempuan     161.0911    61.92837  108.78261
## 22  99  99   42     Laki-laki     170.1469    74.20574  109.68199
## 23 103 103   43     Laki-laki     163.4302    63.06905   81.26862
## 24 106 106   64     Laki-laki     172.3183    75.89983   94.52075
## 25 107 107   66     Perempuan     154.6243    66.60738   80.28922
## 26 117 117   47     Perempuan     159.2092    71.56530   98.59612
## 27 118 118   68     Perempuan     161.8601    44.59884   90.92707
## 28 121 121   52     Laki-laki     171.6620    59.58327   87.13610
## 29 122 122   35     Perempuan     159.3503    58.30280   71.26313
## 30 127 127   26     Laki-laki     169.5742    75.63867   98.99925
## 31 129 129   25     Laki-laki     179.3486    62.67146  105.99731
## 32 130 130   54     Perempuan     156.6493    63.44879   68.63151
## 33 135 135   45     Laki-laki     172.6417    69.43944   79.54032
## 34 136 136   52     Laki-laki     155.6344    75.24914   86.13171
## 35 140 140   41     Laki-laki     169.2868    80.19157   96.86216
## 36 141 141   34     Laki-laki     174.3693    77.11602   92.82127
## 37 143 143   19     Perempuan     164.2250    46.51267  101.38473
## 38 146 146   30     Laki-laki     157.7273    47.89367   85.06642
## 39 147 147   30     Laki-laki     170.6953    96.91714   83.06207
## 40 151 151   62     Laki-laki     177.1046    85.38430   98.86059
## 41 154 154   31     Laki-laki     170.8165    72.13958  103.46210
## 42 158 158   29     Laki-laki     169.7687    67.98542  105.56590
## 43 162 162   36     Laki-laki     174.5584    76.16456   93.33758
## 44 171 171   51     Laki-laki     186.9174    53.32072  107.70310
## 45 178 178   46     Laki-laki     171.0113    67.21546   99.79805
## 46 179 179   63     Laki-laki     169.8998    74.74912   64.42682
## 47 182 182   34     Perempuan     159.3859    51.00317   85.87357
## 48 184 184   32     Perempuan     162.9919    55.86592   90.64148
## 49 190 190   65     Laki-laki     172.4227    63.46220   56.02153
## 50 196 196   42     Laki-laki     180.5273    78.18828  103.30915
## 51 200 200   48     Perempuan     171.1595    58.00647  107.45823
##    tekanan_sistolik tekanan_diastolik kolesterol skor_kesehatan      BMI
## 1         132.77287          87.14848  176.38007       88.52949 27.39884
## 2         108.78105          75.68339  172.18406      100.00000 18.15435
## 3         101.54354          88.06185  172.52414      100.00000 24.30534
## 4         117.95795          83.07390  174.01196      100.00000 25.07465
## 5          87.38813          85.08485  189.82547      100.00000 22.99075
## 6         132.85178          95.80432  188.86127       93.04345 22.33587
## 7         107.21211          87.84438  127.15556      100.00000 18.73539
## 8         117.53594          84.78366  151.23973      100.00000 25.33133
## 9          90.98334          83.68377  178.28878      100.00000 26.41609
## 10        109.10843          79.93154  153.14666      100.00000 22.79113
## 11        135.77552          98.50572  125.12176       99.78350 18.06839
## 12        129.34358          85.73675  184.59438       98.97290 21.41878
## 13        103.42226          88.68793  165.20358      100.00000 25.43727
## 14        128.87919          93.69352  191.03583       90.67423 24.78077
## 15        131.29943          87.29560  190.16373       97.28383 24.51932
## 16        121.10398          84.23645  170.00037      100.00000 24.92849
## 17        115.80176          78.55389  169.97974      100.00000 26.73883
## 18        118.96852          84.41383  179.83894       98.63909 21.03067
## 19         90.12693         102.14465  149.71127      100.00000 23.53220
## 20        114.68446          89.69434  194.08886      100.00000 25.39314
## 21        124.87238          88.92571  174.19194       94.20821 23.86419
## 22        119.22423          90.89112  192.61733       87.49844 25.63241
## 23        102.78344          70.97902   98.56417      100.00000 23.61302
## 24        129.72521         101.27214  156.96755      100.00000 25.56102
## 25        101.70285          83.66114  184.95677      100.00000 27.85908
## 26        109.81332          77.24110  178.61753       94.47592 28.23360
## 27         94.45553          86.82315  160.25810      100.00000 17.02331
## 28        111.24541          81.11620  197.77654      100.00000 20.21976
## 29         90.08882          77.16595  196.28898      100.00000 22.96061
## 30        138.36840          95.32424  147.44299       96.40854 26.30414
## 31        114.73206          78.00381  157.63963      100.00000 19.48380
## 32         94.09318          86.31523  193.21566      100.00000 25.85632
## 33        118.31161          84.14308  160.31403      100.00000 23.29779
## 34         92.04500          89.89058  188.41602       98.51579 31.06634
## 35        113.42155          87.29278  199.23180       89.48931 27.98224
## 36        116.72109          91.11380  188.19960       98.40598 25.36323
## 37        111.26910          79.23829  185.84155       93.74989 17.24617
## 38        107.91453          95.77852  162.56209      100.00000 19.25148
## 39        102.50723          79.38077  152.65247      100.00000 33.26270
## 40        117.80359          79.78205  168.95484       96.11934 27.22189
## 41        133.27669          89.48159  156.37965       96.80100 24.72374
## 42         97.56260          68.87455  195.76001      100.00000 23.58850
## 43        121.65014          89.93480  140.40553      100.00000 24.99607
## 44        112.62892          93.25908  167.70232       90.70285 15.26147
## 45        111.72194          82.07172  188.99285      100.00000 22.98367
## 46        102.25801          79.56653  189.46409      100.00000 25.89525
## 47        126.32827          88.51856  174.88399      100.00000 20.07693
## 48        128.35869          84.40299  162.05932      100.00000 21.02881
## 49        102.18771          86.68283  191.64378      100.00000 21.34647
## 50        101.66395          81.29966  194.55497       99.33587 23.99142
## 51        111.50836          88.38219  159.06507      100.00000 19.80043
##     tekanan
## 1  1.523525
## 2  1.437317
## 3  1.153093
## 4  1.419916
## 5  1.027070
## 6  1.386699
## 7  1.220478
## 8  1.386304
## 9  1.087228
## 10 1.365023
## 11 1.378352
## 12 1.508613
## 13 1.166137
## 14 1.375540
## 15 1.504078
## 16 1.437667
## 17 1.474170
## 18 1.409349
## 19 0.882346
## 20 1.278614
## 21 1.404233
## 22 1.311726
## 23 1.448082
## 24 1.280957
## 25 1.215652
## 26 1.421695
## 27 1.087907
## 28 1.371433
## 29 1.167469
## 30 1.451555
## 31 1.470852
## 32 1.090111
## 33 1.406076
## 34 1.023967
## 35 1.299323
## 36 1.281047
## 37 1.404234
## 38 1.126709
## 39 1.291336
## 40 1.476567
## 41 1.489431
## 42 1.416526
## 43 1.352648
## 44 1.207699
## 45 1.361272
## 46 1.285189
## 47 1.427139
## 48 1.520784
## 49 1.178869
## 50 1.250484
## 51 1.261661
dfk %>% 
  group_by(jenis_kelamin) %>% 
summarise(mean(tinggi_badan))
## # A tibble: 2 × 2
##   jenis_kelamin `mean(tinggi_badan)`
##   <chr>                        <dbl>
## 1 Laki-laki                     171.
## 2 Perempuan                     160.
dfk %>% 
  summarize(mean(umur))
##   mean(umur)
## 1     44.315