Libraries:
# Load libraries
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.1 ✔ stringr 1.5.2
## ✔ ggplot2 4.0.0 ✔ tibble 3.3.0
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.1.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(dplyr)
library(readxl)
Import and reshape data:
# Import data from Desktop (change to .xlsx since your file is Excel format)
stock_df <- read_excel("C:/Users/asus/Desktop/stock_df.xlsx")
# Display original wide format
stock_df
## # A tibble: 5 × 106
## company `2019_week1` `2019_week2` `2019_week3` `2019_week4` `2019_week5`
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Amazon 1848. 1641. 1696. 1671. 1626.
## 2 Apple 73.4 38.1 39.2 39.4 41.6
## 3 Facebook 205. 144. 150. 149. 166.
## 4 Google 1337. 1057. 1098. 1091. 1111.
## 5 Microsoft 158. 103. 108. 107. 103.
## # ℹ 100 more variables: `2019_week6` <dbl>, `2019_week7` <dbl>,
## # `2019_week8` <dbl>, `2019_week9` <dbl>, `2019_week10` <dbl>,
## # `2019_week11` <dbl>, `2019_week12` <dbl>, `2019_week13` <dbl>,
## # `2019_week14` <dbl>, `2019_week15` <dbl>, `2019_week16` <dbl>,
## # `2019_week17` <dbl>, `2019_week18` <dbl>, `2019_week19` <dbl>,
## # `2019_week20` <dbl>, `2019_week21` <dbl>, `2019_week22` <dbl>,
## # `2019_week23` <dbl>, `2019_week24` <dbl>, `2019_week25` <dbl>, …
# Reshape from wide to long format
stock_df_long <- stock_df %>%
pivot_longer(
cols = -company,
names_to = "week_info",
values_to = "price"
) %>%
separate(
col = week_info,
into = c("year", "week"),
sep = "_week"
) %>%
mutate(
year = as.numeric(year),
week = as.numeric(week)
)
# Display reshaped long format
stock_df_long
## # A tibble: 525 × 4
## company year week price
## <chr> <dbl> <dbl> <dbl>
## 1 Amazon 2019 1 1848.
## 2 Amazon 2019 2 1641.
## 3 Amazon 2019 3 1696.
## 4 Amazon 2019 4 1671.
## 5 Amazon 2019 5 1626.
## 6 Amazon 2019 6 1588.
## 7 Amazon 2019 7 1608.
## 8 Amazon 2019 8 1632.
## 9 Amazon 2019 9 1672.
## 10 Amazon 2019 10 1621.
## # ℹ 515 more rows