library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
data_kesehatan <- read.csv("data_kesehatan.csv")
head(data_kesehatan)
##   X id umur jenis_kelamin tinggi_badan berat_badan gula_darah tekanan_sistolik
## 1 1  1   33     Perempuan     159.5587    62.85027   80.08403         129.2978
## 2 2  2   59     Perempuan     152.9881    54.73592   79.20090         108.6373
## 3 3  3   39     Perempuan     156.1915    66.84162   99.64040         132.7729
## 4 4  4   64     Laki-laki     173.8024    54.83932   97.35650         108.7811
## 5 5  5   67     Perempuan     164.0242    62.21020   49.01314         129.4536
## 6 6  6   20     Perempuan     150.0967    61.15284  120.81147         136.4499
##   tekanan_diastolik kolesterol skor_kesehatan
## 1          69.13882   181.3293      100.00000
## 2          73.34697   209.6954      100.00000
## 3          87.14848   176.3801       88.52949
## 4          75.68339   172.1841      100.00000
## 5          82.27615   138.6886      100.00000
## 6          92.94946   183.7165       75.39378
head(data_kesehatan)
##   X id umur jenis_kelamin tinggi_badan berat_badan gula_darah tekanan_sistolik
## 1 1  1   33     Perempuan     159.5587    62.85027   80.08403         129.2978
## 2 2  2   59     Perempuan     152.9881    54.73592   79.20090         108.6373
## 3 3  3   39     Perempuan     156.1915    66.84162   99.64040         132.7729
## 4 4  4   64     Laki-laki     173.8024    54.83932   97.35650         108.7811
## 5 5  5   67     Perempuan     164.0242    62.21020   49.01314         129.4536
## 6 6  6   20     Perempuan     150.0967    61.15284  120.81147         136.4499
##   tekanan_diastolik kolesterol skor_kesehatan
## 1          69.13882   181.3293      100.00000
## 2          73.34697   209.6954      100.00000
## 3          87.14848   176.3801       88.52949
## 4          75.68339   172.1841      100.00000
## 5          82.27615   138.6886      100.00000
## 6          92.94946   183.7165       75.39378
data_kesehatan %>% 
  arrange(skor_kesehatan) %>% 
  slice(1:5)
##     X  id umur jenis_kelamin tinggi_badan berat_badan gula_darah
## 1  49  49   32     Perempuan     147.6860    72.92436   135.0351
## 2  11  11   68     Perempuan     162.9534    39.93666   155.9478
## 3  70  70   41     Laki-laki     170.6245    80.10678   135.5821
## 4 193 193   69     Laki-laki     176.1898    78.86749   143.8718
## 5 176 176   50     Laki-laki     165.8736    88.77864   115.3701
##   tekanan_sistolik tekanan_diastolik kolesterol skor_kesehatan
## 1         141.0703          85.51274   218.5767       45.44594
## 2         123.0276          80.65068   224.3279       48.51474
## 3         136.8850          71.69891   238.1264       53.51686
## 4         135.8586          75.48187   236.9744       54.22224
## 5         129.4345          88.19628   232.7038       57.96087
head(data_kesehatan)
##   X id umur jenis_kelamin tinggi_badan berat_badan gula_darah tekanan_sistolik
## 1 1  1   33     Perempuan     159.5587    62.85027   80.08403         129.2978
## 2 2  2   59     Perempuan     152.9881    54.73592   79.20090         108.6373
## 3 3  3   39     Perempuan     156.1915    66.84162   99.64040         132.7729
## 4 4  4   64     Laki-laki     173.8024    54.83932   97.35650         108.7811
## 5 5  5   67     Perempuan     164.0242    62.21020   49.01314         129.4536
## 6 6  6   20     Perempuan     150.0967    61.15284  120.81147         136.4499
##   tekanan_diastolik kolesterol skor_kesehatan
## 1          69.13882   181.3293      100.00000
## 2          73.34697   209.6954      100.00000
## 3          87.14848   176.3801       88.52949
## 4          75.68339   172.1841      100.00000
## 5          82.27615   138.6886      100.00000
## 6          92.94946   183.7165       75.39378
data_kesehatan %>% 
  arrange(skor_kesehatan) %>% 
  slice(1:5)
##     X  id umur jenis_kelamin tinggi_badan berat_badan gula_darah
## 1  49  49   32     Perempuan     147.6860    72.92436   135.0351
## 2  11  11   68     Perempuan     162.9534    39.93666   155.9478
## 3  70  70   41     Laki-laki     170.6245    80.10678   135.5821
## 4 193 193   69     Laki-laki     176.1898    78.86749   143.8718
## 5 176 176   50     Laki-laki     165.8736    88.77864   115.3701
##   tekanan_sistolik tekanan_diastolik kolesterol skor_kesehatan
## 1         141.0703          85.51274   218.5767       45.44594
## 2         123.0276          80.65068   224.3279       48.51474
## 3         136.8850          71.69891   238.1264       53.51686
## 4         135.8586          75.48187   236.9744       54.22224
## 5         129.4345          88.19628   232.7038       57.96087
responden_sehat <- subset(data_kesehatan,
                          gula_darah < 100 &
                          kolesterol < 200 &
                            tekanan_sistolik < 130 &
                            tekanan_diastolik < 85)
responden_sehat
##       X  id umur jenis_kelamin tinggi_badan berat_badan gula_darah
## 1     1   1   33     Perempuan     159.5587    62.85027   80.08403
## 4     4   4   64     Laki-laki     173.8024    54.83932   97.35650
## 5     5   5   67     Perempuan     164.0242    62.21020   49.01314
## 15   15  15   23     Perempuan     157.5179    62.21498   95.77506
## 21   21  21   64     Perempuan     170.6770    50.16811   96.71820
## 25   25  25   52     Perempuan     155.6892    57.85835   67.03010
## 33   33  33   54     Perempuan     161.8002    66.31568   80.91102
## 36   36  36   43     Perempuan     153.5355    62.27103   77.26214
## 41   41  41   25     Laki-laki     164.4796    61.65812   79.55305
## 46   46  46   25     Laki-laki     183.3165    78.99354   79.59199
## 47   47  47   30     Laki-laki     169.2932    61.69188   73.73098
## 48   48  48   42     Perempuan     165.2998    68.36245   90.11038
## 65   65  65   60     Perempuan     153.4433    58.69372   96.75034
## 73   73  73   55     Laki-laki     174.7902    73.97842   79.48916
## 74   74  74   18     Perempuan     158.5639    67.22813   88.35197
## 79   79  79   36     Laki-laki     172.9972    61.46376   97.88880
## 87   87  87   69     Perempuan     165.4886    51.69495   82.16957
## 95   95  95   35     Laki-laki     184.0174    54.52223   87.38064
## 103 103 103   43     Laki-laki     163.4302    63.06905   81.26862
## 107 107 107   66     Perempuan     154.6243    66.60738   80.28922
## 117 117 117   47     Perempuan     159.2092    71.56530   98.59612
## 120 120 120   39     Laki-laki     176.3797    74.03290   59.89084
## 121 121 121   52     Laki-laki     171.6620    59.58327   87.13610
## 122 122 122   35     Perempuan     159.3503    58.30280   71.26313
## 125 125 125   37     Perempuan     166.6879    65.32128   89.50658
## 128 128 128   23     Perempuan     160.8346    61.57022   91.12501
## 132 132 132   64     Perempuan     156.9620    49.26205   98.07674
## 135 135 135   45     Laki-laki     172.6417    69.43944   79.54032
## 147 147 147   30     Laki-laki     170.6953    96.91714   83.06207
## 151 151 151   62     Laki-laki     177.1046    85.38430   98.86059
## 159 159 159   41     Laki-laki     152.7387    49.62318   76.28817
## 166 166 166   46     Laki-laki     168.5314    79.67859   59.62623
## 175 175 175   53     Laki-laki     173.5709    72.79628   97.99972
## 178 178 178   46     Laki-laki     171.0113    67.21546   99.79805
## 179 179 179   63     Laki-laki     169.8998    74.74912   64.42682
## 180 180 180   48     Perempuan     160.1566    61.17134   84.44757
## 183 183 183   55     Perempuan     152.9106    57.55624   99.12861
## 184 184 184   32     Perempuan     162.9919    55.86592   90.64148
## 197 197 197   39     Laki-laki     164.5810    73.88365   86.94451
##     tekanan_sistolik tekanan_diastolik kolesterol skor_kesehatan
## 1          129.29775          69.13882  181.32930      100.00000
## 4          108.78105          75.68339  172.18406      100.00000
## 5          129.45360          82.27615  138.68861      100.00000
## 15         117.95795          83.07390  174.01196      100.00000
## 21         126.29375          78.49791  173.57117       94.09372
## 25         114.14047          74.05822  179.86958      100.00000
## 33         117.53594          84.78366  151.23973      100.00000
## 36          90.98334          83.68377  178.28878      100.00000
## 41         109.10843          79.93154  153.14666      100.00000
## 46         129.76168          68.20481  172.87288      100.00000
## 47         122.74572          62.58978  133.55706      100.00000
## 48         128.23162          60.07414  154.72905      100.00000
## 65         121.10398          84.23645  170.00037      100.00000
## 73         126.22051          70.32968  188.92180      100.00000
## 74         115.80176          78.55389  169.97974      100.00000
## 79         118.36024          61.48308  175.90637      100.00000
## 87         116.02074          74.12914  165.48475      100.00000
## 95         121.24533          69.06699  176.98302       97.35104
## 103        102.78344          70.97902   98.56417      100.00000
## 107        101.70285          83.66114  184.95677      100.00000
## 117        109.81332          77.24110  178.61753       94.47592
## 120        125.40536          76.55324  192.68540      100.00000
## 121        111.24541          81.11620  197.77654      100.00000
## 122         90.08882          77.16595  196.28898      100.00000
## 125        123.11221          79.91848  197.61179       99.28702
## 128        109.47293          66.42002  157.70810      100.00000
## 132        129.33615          84.26014  144.54028      100.00000
## 135        118.31161          84.14308  160.31403      100.00000
## 147        102.50723          79.38077  152.65247      100.00000
## 151        117.80359          79.78205  168.95484       96.11934
## 159        108.47374          69.48927  170.31271      100.00000
## 166        117.43331          68.48779  153.50958      100.00000
## 175        105.91656          64.15009  128.66569      100.00000
## 178        111.72194          82.07172  188.99285      100.00000
## 179        102.25801          79.56653  189.46409      100.00000
## 180        129.30995          74.89840  185.50631      100.00000
## 183        126.63697          65.73815  198.31034       90.91384
## 184        128.35869          84.40299  162.05932      100.00000
## 197        126.77928          76.71493  193.65011       92.80241
library(dplyr)

data_kesehatan %>%
  filter(kolesterol < 200, gula_darah < 110) %>%
  summarise(rata_rata = mean(skor_kesehatan, na.rm = TRUE))
##   rata_rata
## 1  96.57272