This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
You can also embed plots, for example:
Note that the echo = FALSE parameter was added to the
code chunk to prevent printing of the R code that generated the
plot.
databaru <- read.csv("data_kesehatan.csv")
head(databaru)
## X id umur jenis_kelamin tinggi_badan berat_badan gula_darah tekanan_sistolik
## 1 1 1 33 Perempuan 159.5587 62.85027 80.08403 129.2978
## 2 2 2 59 Perempuan 152.9881 54.73592 79.20090 108.6373
## 3 3 3 39 Perempuan 156.1915 66.84162 99.64040 132.7729
## 4 4 4 64 Laki-laki 173.8024 54.83932 97.35650 108.7811
## 5 5 5 67 Perempuan 164.0242 62.21020 49.01314 129.4536
## 6 6 6 20 Perempuan 150.0967 61.15284 120.81147 136.4499
## tekanan_diastolik kolesterol skor_kesehatan
## 1 69.13882 181.3293 100.00000
## 2 73.34697 209.6954 100.00000
## 3 87.14848 176.3801 88.52949
## 4 75.68339 172.1841 100.00000
## 5 82.27615 138.6886 100.00000
## 6 92.94946 183.7165 75.39378
library(readxl)
data <- read_excel("data_kesehatan.xlsx")
responden_sehat <- subset(data,
gula_darah < 110 &
kolesterol < 200 &
tekanan_sistolik < 130 &
tekanan_diastolik < 85)
responden_sehat
## # A tibble: 48 × 10
## id umur jenis_kelamin tinggi_badan berat_badan gula_darah
## <dbl> <dbl> <chr> <dbl> <dbl> <dbl>
## 1 1 33 Perempuan 160. 62.9 80.1
## 2 4 64 Laki-laki 174. 54.8 97.4
## 3 5 67 Perempuan 164. 62.2 49.0
## 4 15 23 Perempuan 158. 62.2 95.8
## 5 21 64 Perempuan 171. 50.2 96.7
## 6 25 52 Perempuan 156. 57.9 67.0
## 7 29 33 Perempuan 170. 50.6 108.
## 8 33 54 Perempuan 162. 66.3 80.9
## 9 36 43 Perempuan 154. 62.3 77.3
## 10 41 25 Laki-laki 164. 61.7 79.6
## # ℹ 38 more rows
## # ℹ 4 more variables: tekanan_sistolik <dbl>, tekanan_diastolik <dbl>,
## # kolesterol <dbl>, skor_kesehatan <dbl>
jumlah_sehat <- nrow(responden_sehat)
print(jumlah_sehat)
## [1] 48
library(readxl)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
data <- read_excel("data_kesehatan.xlsx")
terendah <- data %>%
arrange(skor_kesehatan) %>%
slice(1:5)
print(terendah)
## # A tibble: 5 × 10
## id umur jenis_kelamin tinggi_badan berat_badan gula_darah tekanan_sistolik
## <dbl> <dbl> <chr> <dbl> <dbl> <dbl> <dbl>
## 1 49 32 Perempuan 148. 72.9 135. 141.
## 2 11 68 Perempuan 163. 39.9 156. 123.
## 3 70 41 Laki-laki 171. 80.1 136. 137.
## 4 193 69 Laki-laki 176. 78.9 144. 136.
## 5 176 50 Laki-laki 166. 88.8 115. 129.
## # ℹ 3 more variables: tekanan_diastolik <dbl>, kolesterol <dbl>,
## # skor_kesehatan <dbl>
library(readxl)
library(dplyr)
data <- read_excel("data_kesehatan.xlsx")
terendah <- data %>%
arrange(gula_darah) %>%
slice(1)
print(terendah)
## # A tibble: 1 × 10
## id umur jenis_kelamin tinggi_badan berat_badan gula_darah tekanan_sistolik
## <dbl> <dbl> <chr> <dbl> <dbl> <dbl> <dbl>
## 1 5 67 Perempuan 164. 62.2 49.0 129.
## # ℹ 3 more variables: tekanan_diastolik <dbl>, kolesterol <dbl>,
## # skor_kesehatan <dbl>
data <- data %>%
mutate(BMI = berat_badan / (tinggi_badan / 100)^2)
rata_rata <- data %>%
filter(BMI > 30) %>%
summarise(rata_sk = mean(skor_kesehatan)) %>%
pull(rata_sk)
print(rata_rata)
## [1] 74.92593
rata_tinggi <- data %>%
filter(jenis_kelamin == "Laki-laki") %>%
summarise(rata_cm = mean(tinggi_badan)) %>%
pull(rata_cm)
print(rata_tinggi)
## [1] 171.0215