Bài tập ngày 1

Việc 1: Tải R, RStudio về máy tính và cài đặt hai nhu liệu này.

https://cran.r-project.org/mirrors.html (Chọn 0-Cloud)

https://www.rstudio.com/products/rstudio/download

Việc 2: Cài đặt các gói lệnh (packages) cần thiết (nếu chưa cài đặt)

install.packages(c(“lessR”, “table1”, “compareGroups”, “simpleboot”, “boot”, “GGally”, “gapminder”, “ggfortify”, “BMA”, “ggplot2”, “gridExtra”), dependencies = T)

Việc 3: Đọc dữ liệu “Obesity data.csv” vào R và gọi dữ liệu là “ob” (dùng hàm read.csv)

ob=read.csv("D:\\NAM KHANH\\Tap huan phan tich du lieu voi R\\Obesity data.csv")
a=file.choose()

Việc 4: Thông tin về dữ liệu ob

4.1. Có bao nhiêu biến số và quan sát

dim(ob)
## [1] 1217   13

4.2. Liệt kê 6 quan sát đầu tiên của dữ liệu

head(ob)
##   id gender height weight  bmi age WBBMC wbbmd   fat  lean pcfat hypertension
## 1  1      F    150     49 21.8  53  1312  0.88 17802 28600  37.3            0
## 2  2      M    165     52 19.1  65  1309  0.84  8381 40229  16.8            1
## 3  3      F    157     57 23.1  64  1230  0.84 19221 36057  34.0            1
## 4  4      F    156     53 21.8  56  1171  0.80 17472 33094  33.8            1
## 5  5      M    160     51 19.9  54  1681  0.98  7336 40621  14.8            0
## 6  6      F    153     47 20.1  52  1358  0.91 14904 30068  32.2            1
##   diabetes
## 1        1
## 2        0
## 3        0
## 4        0
## 5        0
## 6        0

4.3. Liệt kê 6 quan sát cuối cùng của dữ liệu

tail(ob)
##        id gender height weight  bmi age WBBMC wbbmd   fat  lean pcfat
## 1212 1222      F    153     50 21.4  59  1309  0.87 18328 29147  37.6
## 1213 1223      F    150     44 19.6  44  1474  0.95 12906 28534  30.1
## 1214 1224      F    148     51 23.3  58  1522  0.97 14938 33931  29.6
## 1215 1225      F    149     50 22.5  57  1409  0.93 16777 30598  34.4
## 1216 1226      F    144     49 23.6  67  1266  0.90 20094 27272  41.3
## 1217 1227      F    141     45 22.6  58  1228  0.91 14567 28111  33.2
##      hypertension diabetes
## 1212            1        0
## 1213            0        1
## 1214            0        0
## 1215            1        0
## 1216            1        0
## 1217            0        0

4.4. Tóm tắt dữ liệu

summary(ob)
##        id            gender              height          weight     
##  Min.   :   1.0   Length:1217        Min.   :136.0   Min.   :34.00  
##  1st Qu.: 309.0   Class :character   1st Qu.:151.0   1st Qu.:49.00  
##  Median : 615.0   Mode  :character   Median :155.0   Median :54.00  
##  Mean   : 614.5                      Mean   :156.7   Mean   :55.14  
##  3rd Qu.: 921.0                      3rd Qu.:162.0   3rd Qu.:61.00  
##  Max.   :1227.0                      Max.   :185.0   Max.   :95.00  
##       bmi            age            WBBMC          wbbmd            fat       
##  Min.   :14.5   Min.   :13.00   Min.   : 695   Min.   :0.650   Min.   : 4277  
##  1st Qu.:20.2   1st Qu.:35.00   1st Qu.:1481   1st Qu.:0.930   1st Qu.:13768  
##  Median :22.2   Median :48.00   Median :1707   Median :1.010   Median :16955  
##  Mean   :22.4   Mean   :47.15   Mean   :1725   Mean   :1.009   Mean   :17288  
##  3rd Qu.:24.3   3rd Qu.:58.00   3rd Qu.:1945   3rd Qu.:1.090   3rd Qu.:20325  
##  Max.   :37.1   Max.   :88.00   Max.   :3040   Max.   :1.350   Max.   :40825  
##       lean           pcfat       hypertension      diabetes     
##  Min.   :19136   Min.   : 9.2   Min.   :0.000   Min.   :0.0000  
##  1st Qu.:30325   1st Qu.:27.0   1st Qu.:0.000   1st Qu.:0.0000  
##  Median :33577   Median :32.4   Median :1.000   Median :0.0000  
##  Mean   :35463   Mean   :31.6   Mean   :0.507   Mean   :0.1109  
##  3rd Qu.:39761   3rd Qu.:36.8   3rd Qu.:1.000   3rd Qu.:0.0000  
##  Max.   :63059   Max.   :48.4   Max.   :1.000   Max.   :1.0000

Việc 5: Biên tập dữ liệu

5.1. Mã hoá biến gender (F/M) thành biến sex với giá trị 0/1 (0= M; 1= F)

ob$sex[ob$gender == "F"] = 1
ob$sex[ob$gender == "M"] = 0
table(ob$sex, ob$gender)
##    
##       F   M
##   0   0 355
##   1 862   0
head(ob)
##   id gender height weight  bmi age WBBMC wbbmd   fat  lean pcfat hypertension
## 1  1      F    150     49 21.8  53  1312  0.88 17802 28600  37.3            0
## 2  2      M    165     52 19.1  65  1309  0.84  8381 40229  16.8            1
## 3  3      F    157     57 23.1  64  1230  0.84 19221 36057  34.0            1
## 4  4      F    156     53 21.8  56  1171  0.80 17472 33094  33.8            1
## 5  5      M    160     51 19.9  54  1681  0.98  7336 40621  14.8            0
## 6  6      F    153     47 20.1  52  1358  0.91 14904 30068  32.2            1
##   diabetes sex
## 1        1   1
## 2        0   0
## 3        0   1
## 4        0   1
## 5        0   0
## 6        0   1

5.2. Mã hoá biến bmi thành biến obese với 4 nhóm như sau:

ob$obese[ob$bmi< 18.5] = "Thiếu cân"
ob$obese[ob$bmi>= 18.5 & ob$bmi< 25] = "Bình thường"
ob$obese[ob$bmi>= 25 & ob$bmi< 30] = "Thừa cân"
ob$obese[ob$bmi>= 30] = "Béo phì"

5.3. Tạo biến số mới lean.kg và fat.kg tính toán lượng cơ (lean) và mỡ (fat) bằng đơn vị kg

ob$lean.kg = ob$lean/1000
ob$fat.kg = ob$fat/1000

5.4. Tạo 1 tập dữ liệu men.overweight gồm nam giới quá cân (25.0 kg/m2 <= BMI< 30.0 kg/m2) và béo phì (BMI >= 30.0 kg/m2). Có bao nhiêu biến số và quan sát trong tập dữ liệu này?

men.overweight = subset(ob, gender == "M" & bmi>= 25)
dim(men.overweight)
## [1] 85 17
table(men.overweight$obese)
## 
##  Béo phì Thừa cân 
##        4       81

5.5. Tạo 1 tập dữ liệu Demo chỉ bao gồm 6 biến số là id, age, gender, height, weight và pcfat

Demo = subset(ob, select = c(id, age, gender, weight, height, pcfat))
dim(Demo)
## [1] 1217    6
head(Demo)
##   id age gender weight height pcfat
## 1  1  53      F     49    150  37.3
## 2  2  65      M     52    165  16.8
## 3  3  64      F     57    157  34.0
## 4  4  56      F     53    156  33.8
## 5  5  54      M     51    160  14.8
## 6  6  52      F     47    153  32.2

Việc 6: Ghi lại tất cả những hàm/lệnh trên trong RMarkdown và chia sẻ lên tài khoản rpubs