#Homework 5
install.packages("readxl")
##
## The downloaded binary packages are in
## /var/folders/sl/j6hs04wj2db1nl4scr0s7l6r0000gn/T//RtmpNuHkQI/downloaded_packages
install.packages("tidyverse")
##
## The downloaded binary packages are in
## /var/folders/sl/j6hs04wj2db1nl4scr0s7l6r0000gn/T//RtmpNuHkQI/downloaded_packages
library(tidyverse)
library(readxl)
library(writexl)
bikeshops_tbl <- read_excel("downloads/bikeshops.xlsx")
orderlines_tbl <- read_excel("downloads/orderlines.xlsx")
## New names:
## • `` -> `...1`
bike_orderlines_tbl <- read_csv("downloads/bike_orderlines.csv")
## Rows: 15644 Columns: 13
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (7): model, category_1, category_2, frame_material, bikeshop_name, city...
## dbl (5): order_id, order_line, quantity, price, total_price
## dttm (1): order_date
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
revenue_by_category2 <- bike_orderlines_tbl %>%
group_by(category_2) %>%
summarise(revenue = sum(total_price, na.rm = TRUE)) %>%
arrange(desc(revenue))
# 2. Plot with ggplot2
ggplot(revenue_by_category2, aes(x = revenue,
y = reorder(category_2, revenue))) +
geom_col(fill = "blue") +
labs(
x = "revenue",
y = "category_2",
title = "Revenue by Bike Subcategory"
) +
scale_x_continuous(labels = label_number()) + # e.g. 1e+07 → 10M
theme_minimal()