#install.packages("foreign")
library(foreign)
#install.packages("stats")
library(stats)
library(readxl)
## Warning: package 'readxl' was built under R version 4.4.3
#====RANCANGAN ACAK LENGKAP====
#masukkan data
# Membuat data suhu (perlakuan)
Suhu <- c(
  rep(40, 5),
  rep(50, 5),
  rep(60, 5),
  rep(70, 5),
  rep(80, 5),
  rep(90, 5)
)

# Membuat data ulangan (1–5 untuk tiap suhu)
Ulangan <- rep(1:5, times = 6)

# Memasukkan data hasil pengamatan (sesuai tabel)
Kadar.Antosianin <- c(
  19.4, 32.6, 27.0, 32.1, 33.0,   # Suhu 40
  17.7, 24.8, 27.9, 25.2, 24.3,   # Suhu 50
  17.0, 19.4, 9.1, 11.9, 15.8,    # Suhu 60
  20.7, 21.0, 20.5, 18.8, 18.6,   # Suhu 70
  14.3, 14.4, 11.8, 11.6, 14.2,   # Suhu 80
  17.3, 19.4, 19.1, 16.9, 20.8    # Suhu 90
)

# Membentuk data frame
data.antosianin <- data.frame(
  Suhu = as.factor(Suhu),
  Ulangan = as.factor(Ulangan),
  Kadar.Antosianin = Kadar.Antosianin
)

# Menampilkan data
print(data.antosianin)
##    Suhu Ulangan Kadar.Antosianin
## 1    40       1             19.4
## 2    40       2             32.6
## 3    40       3             27.0
## 4    40       4             32.1
## 5    40       5             33.0
## 6    50       1             17.7
## 7    50       2             24.8
## 8    50       3             27.9
## 9    50       4             25.2
## 10   50       5             24.3
## 11   60       1             17.0
## 12   60       2             19.4
## 13   60       3              9.1
## 14   60       4             11.9
## 15   60       5             15.8
## 16   70       1             20.7
## 17   70       2             21.0
## 18   70       3             20.5
## 19   70       4             18.8
## 20   70       5             18.6
## 21   80       1             14.3
## 22   80       2             14.4
## 23   80       3             11.8
## 24   80       4             11.6
## 25   80       5             14.2
## 26   90       1             17.3
## 27   90       2             19.4
## 28   90       3             19.1
## 29   90       4             16.9
## 30   90       5             20.8
# Membuat faktor perlakuan (Metode)
Metode <- c(
  rep("A", 15),
  rep("B", 15),
  rep("C", 15)
)

# Membuat faktor ulangan (1–15 untuk tiap metode)
Ulangan <- rep(1:15, times = 3)

# Memasukkan nilai data sesuai tabel
Nilai <- c(
  # Metode A
  73, 89, 82, 43, 80, 73, 66, 60, 45, 93, 36, 77, NA, NA, NA,  # isi NA jika tidak ada data
  # Metode B
  88, 78, 48, 91, 51, 85, 74, 77, 31, 78, 62, 76, 96, 80, 56,
  # Metode C
  68, 79, 56, 91, 71, 71, 87, 41, 59, 68, 53, 79, 15, NA, NA
)

# Membentuk data frame
data.metode <- data.frame(
  Metode = as.factor(Metode),
  Ulangan = as.factor(Ulangan),
  Nilai = Nilai
)

# Melihat struktur data
print(data.metode)
##    Metode Ulangan Nilai
## 1       A       1    73
## 2       A       2    89
## 3       A       3    82
## 4       A       4    43
## 5       A       5    80
## 6       A       6    73
## 7       A       7    66
## 8       A       8    60
## 9       A       9    45
## 10      A      10    93
## 11      A      11    36
## 12      A      12    77
## 13      A      13    NA
## 14      A      14    NA
## 15      A      15    NA
## 16      B       1    88
## 17      B       2    78
## 18      B       3    48
## 19      B       4    91
## 20      B       5    51
## 21      B       6    85
## 22      B       7    74
## 23      B       8    77
## 24      B       9    31
## 25      B      10    78
## 26      B      11    62
## 27      B      12    76
## 28      B      13    96
## 29      B      14    80
## 30      B      15    56
## 31      C       1    68
## 32      C       2    79
## 33      C       3    56
## 34      C       4    91
## 35      C       5    71
## 36      C       6    71
## 37      C       7    87
## 38      C       8    41
## 39      C       9    59
## 40      C      10    68
## 41      C      11    53
## 42      C      12    79
## 43      C      13    15
## 44      C      14    NA
## 45      C      15    NA
#ANOVA
#Cara 1
#data 1
anova.antosianin<-lm(Kadar.Antosianin~Suhu, data.antosianin)
anova(anova.antosianin)
## Analysis of Variance Table
## 
## Response: Kadar.Antosianin
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Suhu       5 847.05 169.409   14.37 1.485e-06 ***
## Residuals 24 282.93  11.789                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#data 2
anova.metode <- lm(Nilai~Metode, data.metode)
anova(anova.metode)
## Analysis of Variance Table
## 
## Response: Nilai
##           Df  Sum Sq Mean Sq F value Pr(>F)
## Metode     2   335.4  167.68  0.4647 0.6319
## Residuals 37 13349.7  360.80
#Cara 2
#data 1
ujianova = aov(Kadar.Antosianin~Suhu, data.antosianin)
ujianova
## Call:
##    aov(formula = Kadar.Antosianin ~ Suhu, data = data.antosianin)
## 
## Terms:
##                     Suhu Residuals
## Sum of Squares  847.0467  282.9280
## Deg. of Freedom        5        24
## 
## Residual standard error: 3.433463
## Estimated effects may be unbalanced
summary(ujianova)
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## Suhu         5  847.0  169.41   14.37 1.48e-06 ***
## Residuals   24  282.9   11.79                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#data 2
ujianova = aov(Nilai~Metode, data =data.metode)
ujianova
## Call:
##    aov(formula = Nilai ~ Metode, data = data.metode)
## 
## Terms:
##                    Metode Residuals
## Sum of Squares    335.353 13349.747
## Deg. of Freedom         2        37
## 
## Residual standard error: 18.99484
## Estimated effects may be unbalanced
## 5 observations deleted due to missingness
summary(ujianova)
##             Df Sum Sq Mean Sq F value Pr(>F)
## Metode       2    335   167.7   0.465  0.632
## Residuals   37  13350   360.8               
## 5 observations deleted due to missingness