<!doctype html>
<nav>
<a href="#summary">Summary</a>
<a href="#experience">Experience</a>
<a href="#education">Education</a>
<a href="#projects">Projects</a>
<a href="#leadership">Leadership</a>
<a href="#skills">Skills</a>
<a href="#awards">Awards & Interests</a>
</nav>
<!-- SUMMARY -->
<section id="summary">
<div class="section-header"><h2>Professional Summary</h2></div>
<div class="sep"></div>
<p>
Data-driven quantitative researcher and applied statistics student specializing in systematic trading strategies,
volatility modeling, and financial data automation. Experienced in Python, machine learning, and applied econometrics.
Known for developing efficient trading algorithms and quantitative tools that deliver measurable alpha.
Incoming <strong>Quantitative Analytics Intern at Morgan Stanley</strong>, passionate about quantitative finance and innovation.
</p>
</section>
<!-- EXPERIENCE -->
<section id="experience">
<div class="section-header"><h2>Professional Experience</h2></div>
<div class="sep"></div>
<article class="job">
<h3>Incoming Quantitative Analytics Intern — Morgan Stanley</h3>
<div class="meta">New York, NY • Summer 2026</div>
</article>
<article class="job">
<h3>Quantitative Research Intern — City of London Investment Management</h3>
<div class="meta">West Chester, PA • Jan 2025 – Aug 2025</div>
<ul>
<li>Developed mean-reversion momentum ETF strategy generating 4.7% annual alpha.</li>
<li>Automated buyback data collection with Selenium and Google BERT, saving 2+ hours daily.</li>
<li>Built L/S ML trading model achieving 5.3% out-of-sample alpha across regimes.</li>
<li>Engineered XGBoost equity strategy producing 7% annualized alpha over 8 years.</li>
</ul>
</article>
<article class="job">
<h3>Portfolio Management Intern — Ausperity Private Wealth</h3>
<div class="meta">Moorestown, NJ • May 2024 – Aug 2024</div>
<ul>
<li>Implemented Python Monte Carlo simulations with 10,000 portfolio return paths.</li>
<li>Automated client segmentation in Excel, increasing efficiency by 75%.</li>
</ul>
</article>
<article class="job">
<h3>Data Analytics Intern — All Star Sports Academy</h3>
<div class="meta">West Chester, PA • Feb 2024 – May 2024</div>
<ul>
<li>Conducted statistical analysis across six locations totaling $1M+ monthly revenue.</li>
<li>Used QuickBooks for payroll, accounting, and tax verification.</li>
</ul>
</article>
</section>
<!-- EDUCATION -->
<section id="education">
<div class="section-header"><h2>Education</h2></div>
<div class="sep"></div>
<strong>West Chester University of Pennsylvania</strong><br>
Accelerated B.S. Mathematics / M.S. Applied Statistics<br>
<span class="muted">GPA: 3.7 | Expected May 2026 (B.S.), May 2027 (M.S.)</span>
<p style="margin-top:8px;">
Coursework: Python for Data Science, Linear Algebra, Machine Learning, Statistical Computing, Financial Analytics<br>
Activities: Varsity Tennis, Pi Kappa Alpha, Math Tutor, Investment Group, Entrepreneurship Fund
</p>
</section>
<!-- PROJECTS -->
<section id="projects">
<div class="section-header"><h2>Quantitative Projects</h2></div>
<div class="sep"></div>
<ul>
<li><strong>volstats – Historical Volatility Estimation Library</strong><br>
Published Python package on PyPI (450+ downloads, 100K+ views). Includes Garman-Klass, Yang-Zhang, EWMA, and hybrid estimators.
</li>
<li><strong>Predicting NVDA Option Implied Volatility with ML</strong><br>
Achieved 0.07 RMSE on out-of-sample data; research gained 18K+ views on LinkedIn.
</li>
</ul>
</section>
<!-- LEADERSHIP -->
<section id="leadership">
<div class="section-header"><h2>Leadership Experience</h2></div>
<div class="sep"></div>
<ul>
<li><strong>13th Annual WCU Business Pitch Runner-Up</strong> — Won $800 for AI-powered workers’ comp automation tool (2024)</li>
<li><strong>External VP & Director of Recruitment, Pi Kappa Alpha</strong> — Increased recruitment 225% vs. 3-year avg.</li>
<li><strong>Mathematics Tutor</strong> — Tutored Calculus, Linear Algebra, and Statistics.</li>
<li><strong>Quant Sector Head, WCU Investment Group</strong> — Led quant analysis using Python & ML.</li>
</ul>
</section>
<!-- SKILLS -->
<section id="skills">
<div class="section-header"><h2>Technical Skills</h2></div>
<div class="sep"></div>
<p><span class="badge">Python</span><span class="badge">SQL</span><span class="badge">R</span><span class="badge">SAS</span><span class="badge">HTML</span><span class="badge">CSS</span></p>
<p><strong>Libraries:</strong> Pandas, NumPy, XGBoost, TensorFlow, Scikit-Learn, Selenium, Flask, Arch, Seaborn, Plotly</p>
<p><strong>Software:</strong> Excel, PowerPoint, Bloomberg Terminal, QuickBooks, Salesforce, Orion</p>
<p><strong>Modeling:</strong> XGBoost, Random Forest, Neural Networks, PCA, SVM, Logistic Regression</p>
<p><strong>Certifications:</strong> CFA Level I Candidate (Feb 2026), Object-Oriented Python (Udemy)</p>
</section>
<!-- AWARDS -->
<section id="awards">
<div class="section-header"><h2>Awards & Interests</h2></div>
<div class="sep"></div>
<ul>
<li><strong>WCU Entrepreneurship Fund</strong> — Runner-Up, 2024</li>
</ul>
<p><strong>Interests:</strong> Blackjack, Tennis, Bodybuilding, Poker, Cologne, John Summit, Huey Lewis & The News</p>
</section>