Setup

Install and load the necessary packages:

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.1     ✔ stringr   1.5.2
## ✔ ggplot2   4.0.0     ✔ tibble    3.3.0
## ✔ lubridate 1.9.4     ✔ tidyr     1.3.1
## ✔ purrr     1.1.0     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(dplyr)
data("mtcars")

Functions

1- Create a function named calculate_area_of_circle that takes one parameter, radius, representing the radius of a circle. The function should calculate and return the area using the formula:

area = 𝜋 × radius^2

Test your function with at least two different radii and print the results.

calculate_area_of_circle <- function (r) {
     if (r<0) {return ("Give me a non-negative value please....")}
     area <- pi * r^2
   return (area)
}

print (calculate_area_of_circle (5))
## [1] 78.53982
print (calculate_area_of_circle (10))
## [1] 314.1593
print (calculate_area_of_circle (0))
## [1] 0
print (calculate_area_of_circle (-10))
## [1] "Give me a non-negative value please...."

2- Write a function called check_temperature that takes a single numeric input temp.

If temp > 30, print “Hot”

If temp >= 15 & temp <= 30, print “Warm”

Otherwise, print “Cold”

Test the function on three different values (e.g., 10, 20, 35).

check_temperature <- function (t) {
  case_when(t>30 ~ 'Hot', t>=15 & t<=30 ~ 'Warm', .default='Cold')
}

check_temperature (10)
## [1] "Cold"
check_temperature (20)
## [1] "Warm"
check_temperature (35)
## [1] "Hot"
check_temperature (-5)
## [1] "Cold"
# for practice, lets use if else

check_temperature2 <- function (t) {
  if (t>30) {return ('Hot')}
  if (t>=15 & t<=30) {return ('Warm')}
  else {return ('Cold')}
} 

check_temperature2 (10)
## [1] "Cold"
check_temperature2 (20)
## [1] "Warm"
check_temperature2 (35)
## [1] "Hot"
check_temperature2 (-5)
## [1] "Cold"

3- Write a function named sum_odd_numbers that uses a for loop to calculate the sum of all even numbers from 1 to n. The function should return the total sum.

note: I interpret that the function should be called sum_even_numbers

Test the function with n = 9 and n = 39.

# for even numbers:

sum_even_numbers <- function (n) {
    tot <- 0
    upto <- n%/%2
    for (i in 1:upto) {
      tot <- tot + 2*i
    }
    return (tot)
  }

sum_even_numbers(9)
## [1] 20
sum_even_numbers(39)
## [1] 380
# the following is for practice -


# using if 

sum_even_numbers <- function (n) {
    tot <- 0
    for (i in 1:n) {
      if (i %% 2 == 0) { tot <- tot + i}
    }
    return (tot)
}

sum_even_numbers(9)
## [1] 20
sum_even_numbers(10)
## [1] 30
sum_odd_numbers <- function (n) {
    tot <- 0
    for (i in 1:n) {
      if (i %% 2 == 1) { tot <- tot + i}
    }
    return (tot)
}

sum_odd_numbers(9)
## [1] 25
sum_odd_numbers(10)
## [1] 25
# play using remainders

sum_odd_numbers <- function (n) {
    tot <- 0
    remainder <- case_when (n%%2==0 ~0, n%%2!=0 ~1)
    upto <- n%/%2 + remainder
    for (i in 1:upto) {
      tot <- tot + 2*i -1
    }
    return (tot)
  }

sum_odd_numbers(9)
## [1] 25
sum_odd_numbers(10)
## [1] 25
sum_odd_numbers(11)
## [1] 36
sum_odd_numbers(12)
## [1] 36

EDA

For this section, use the built-in mtcars dataset (instead of airquality). Perform the following:

Ask a simple question that can be answered with a basic function (e.g., What is the mean miles per gallon (mpg) across all cars?). Write the code and output the answer.

mtcars               # show the dataframe
##                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
## Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
## Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
## Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
## Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
## Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
## Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
## Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
## Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
## Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
## Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
## Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
## Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
## Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
## Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
## Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
## Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
## Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
## Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
## Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
## Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
## Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
## Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
## AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
## Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
## Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
## Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
## Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
## Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
## Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
## Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
## Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
## Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
str (mtcars)         # show structure
## 'data.frame':    32 obs. of  11 variables:
##  $ mpg : num  21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
##  $ cyl : num  6 6 4 6 8 6 8 4 4 6 ...
##  $ disp: num  160 160 108 258 360 ...
##  $ hp  : num  110 110 93 110 175 105 245 62 95 123 ...
##  $ drat: num  3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
##  $ wt  : num  2.62 2.88 2.32 3.21 3.44 ...
##  $ qsec: num  16.5 17 18.6 19.4 17 ...
##  $ vs  : num  0 0 1 1 0 1 0 1 1 1 ...
##  $ am  : num  1 1 1 0 0 0 0 0 0 0 ...
##  $ gear: num  4 4 4 3 3 3 3 4 4 4 ...
##  $ carb: num  4 4 1 1 2 1 4 2 2 4 ...
summary(mtcars)      # get basic stats
##       mpg             cyl             disp             hp       
##  Min.   :10.40   Min.   :4.000   Min.   : 71.1   Min.   : 52.0  
##  1st Qu.:15.43   1st Qu.:4.000   1st Qu.:120.8   1st Qu.: 96.5  
##  Median :19.20   Median :6.000   Median :196.3   Median :123.0  
##  Mean   :20.09   Mean   :6.188   Mean   :230.7   Mean   :146.7  
##  3rd Qu.:22.80   3rd Qu.:8.000   3rd Qu.:326.0   3rd Qu.:180.0  
##  Max.   :33.90   Max.   :8.000   Max.   :472.0   Max.   :335.0  
##       drat             wt             qsec             vs        
##  Min.   :2.760   Min.   :1.513   Min.   :14.50   Min.   :0.0000  
##  1st Qu.:3.080   1st Qu.:2.581   1st Qu.:16.89   1st Qu.:0.0000  
##  Median :3.695   Median :3.325   Median :17.71   Median :0.0000  
##  Mean   :3.597   Mean   :3.217   Mean   :17.85   Mean   :0.4375  
##  3rd Qu.:3.920   3rd Qu.:3.610   3rd Qu.:18.90   3rd Qu.:1.0000  
##  Max.   :4.930   Max.   :5.424   Max.   :22.90   Max.   :1.0000  
##        am              gear            carb      
##  Min.   :0.0000   Min.   :3.000   Min.   :1.000  
##  1st Qu.:0.0000   1st Qu.:3.000   1st Qu.:2.000  
##  Median :0.0000   Median :4.000   Median :2.000  
##  Mean   :0.4062   Mean   :3.688   Mean   :2.812  
##  3rd Qu.:1.0000   3rd Qu.:4.000   3rd Qu.:4.000  
##  Max.   :1.0000   Max.   :5.000   Max.   :8.000
colSums(is.na(mtcars))    # show count of missing values in each column -- 0
##  mpg  cyl disp   hp drat   wt qsec   vs   am gear carb 
##    0    0    0    0    0    0    0    0    0    0    0
# question: what are the mean and median hp across all cars?
  
print ( mean (mtcars$hp) )                    # dataset has no NAs, so na.rm=TRUE unnecessary
## [1] 146.6875
print ( median (mtcars$hp) )                  # dataset has no NAs, so na.rm=TRUE unnecessary
## [1] 123
# or using summarize

mtcars |>
summarize ( hp_mean = mean (hp),
            hp_median = median (hp))
##    hp_mean hp_median
## 1 146.6875       123

Published

Published at: https://rpubs.com/rmiranda/1357863