# Load the enhanced indicator visualization functions
source ("R/functions.R" )
# Example: Create mock sensitivity data for demonstration
library (sf)
library (dplyr)
# Create example grid data with sensitivity indicators
set.seed (123 )
demo_grids <- generate_grid_by_size (demo_trans_area, cellsize_m = 1000 ) %>%
mutate (
# Mock sensitivity indicator data
population_density_persons_per_ha_sum = pmax (0 , rnorm (n (), 25 , 15 )),
built_area_percent_pct = pmax (0 , pmin (100 , rnorm (n (), 30 , 20 ))),
open_area_percent_pct = pmax (0 , pmin (100 , rnorm (n (), 15 , 10 ))),
coastal_vegetation_percent_pct = pmax (0 , pmin (100 , rnorm (n (), 40 , 25 ))),
# Mock ranking data
population_density_persons_per_ha_rank = sample (
1 : 5 ,
n (),
replace = TRUE
),
built_area_percent_rank = sample (1 : 5 , n (), replace = TRUE ),
open_area_percent_rank = sample (1 : 5 , n (), replace = TRUE ),
coastal_vegetation_percent_rank = sample (1 : 5 , n (), replace = TRUE )
)
# Demonstrate individual indicator plotting functions:
# 1. Individual indicator plots
pop_plot <- plot_individual_indicators (
demo_grids,
"population_density_persons_per_ha_sum"
)
built_plot <- plot_individual_indicators (
demo_grids,
"built_area_percent_pct" ,
color_palette = "plasma"
)
# 2. Grid-based indicator visualizations
indicator_plots <- create_indicator_grid_plots (
demo_grids,
sensitivity_framework = NULL
)
# 3. Statistical summaries
stats_table <- create_indicator_statistics_table (demo_grids)
# 4. Indicator comparison
comparison_plot <- create_indicator_comparison_plot (demo_grids)
# Display examples
print (pop_plot)
print (comparison_plot)
knitr:: kable (stats_table, caption = "Statistik Indikator Sensitivitas" )