I. Meta-Data

To run this notebook, the following directories and files need to exist:

  • Data folder:
    • final_dat.xlsx: meta-analytic dataset
    • metaSEM.RData: Big Five correlation matrices for meta-analytic SEM
    • Rayyan_ProQuest.csv, Rayyan_PsyArXiv.csv, Rayyan_published.csv, Rayyan_rerun.csv: abstract screening decisions
  • Scripts folder:
    • 01_helpers.R: helper functions
    • 02_analysis.Rmd: this current RMarkdown file

Descriptive information on all unique samples:

# reads in data
dat <- rio::import("../Data/final_dat.xlsx", na = c("NA")) %>%
  select(-c(Search, Authors, Title, Year, 
            Personality_Scale, Emotion_Scale,
            Notes)) %>%
  mutate(Location = if_else(grepl("US", Location), "US", Location),
         ID = case_when(
           !is.na(Study_Code) ~ paste0(Paper_Code, "_", Study_Code),
           TRUE ~ Paper_Code)) %>%
  select(ID, everything())

# removes 2 duplicated datasets
dat <- dat %>%
  filter(!ID %in% c("Kuppens_2010_study1", "Koval_2013"))

# reads in abstract screening
rayyan_rerun <- rio::import("../Data/Rayyan_rerun.csv") %>% select(notes)
rayyan_pub <- rio::import("../Data/Rayyan_published.csv") %>% select(notes)
rayyan_pq <- rio::import("../Data/Rayyan_ProQuest.csv") %>% select(notes)
rayyan_arx <- rio::import("../Data/Rayyan_PsyArXiv.csv") %>% select(notes)
rayyan <- rbind(rayyan_rerun, rayyan_pub, rayyan_pq, rayyan_arx) %>% na.omit()

# clean up sample characteristics
dat <- dat %>%
  mutate_at(vars(Age_Mean, Age_SD, White_Perc, Female_Perc),
            ~round(., 2))

# show all unique samples info
dat %>%
  select(ID:Time_No) %>%
  unique() %>%
  kable() %>% kable_styling() %>%
  scroll_box(width="800px",
             height="500px")
ID Paper_Code Study_Code Study_Quality Study_Quality_Reli Sample_Size Age_Mean Age_SD Female_Perc White_Perc Location Duration Frequency Time_No
1 Alshamsi_2015 Alshamsi_2015 NA good fair 52 36.00 NA 9.00 NA Italy 30 days 3 times a day 90
21 Armeli_2007 Armeli_2007 NA good good 98 43.50 8.69 50.00 95.00 NA 21 days 3 times a day 63
23 Aurora_2021 Aurora_2021 NA good good 195 20.05 2.38 79.00 81.00 US 10 days 5 times a day 50
28 Balducci_2020 Balducci_2020 NA fair good 213 45.50 10.40 42.50 NA Italy 10 days 1 time a day 10
30 Bartley_2011 Bartley_2011 NA good good 366 20.14 2.10 68.50 37.60 US 5 days 1 time a day 5
40 Bringmann_2016_study1 Bringmann_2016 study1 fair good 95 19.00 1.00 62.00 NA Belgium 7 days 10 times a day 70
50 Bringmann_2016_study2 Bringmann_2016 study2 fair good 79 24.00 8.00 63.00 NA Belgium 14 days 10 times a day 140
60 Buhler_2020_wave2 Buhler_2020 wave2 good good 2626 32.81 13.85 NA NA Austria, Germany, Switzerland 14 days 1 time a day 14
70 Burns_2015 Burns_2015 NA good good 45 28.09 10.80 68.00 NA Australia 14 days 1 time a day 14
74 Clegg_2021 Clegg_2021 NA good good 267 20.26 0.70 67.00 60.00 Canada 20 days 1 time a day 20
84 Conner_2012_condition1 Conner_2012 condition1 good good 54 19.90 2.40 59.00 81.00 New Zealand 13 days 1 time a day 13
89 Conner_2012_condition2 Conner_2012 condition2 good good 54 19.90 2.40 59.00 81.00 New Zealand 13 days 3 times a day 39
94 Conner_2012_condition3 Conner_2012 condition3 good good 54 19.90 2.40 59.00 81.00 New Zealand 13 days 6 times a day 78
99 Conner_2015 Conner_2015 NA good good 658 19.80 1.70 70.21 79.20 New Zealand 13 days 1 time a day 13
109 DMello_2021 DMello_2021 NA good good 598 34.36 9.39 42.00 NA US 56 days 1 time a day 56
119 Dauvier_2019 Dauvier_2019 NA fair fair 191 38.50 17.40 64.00 NA France 14 days 5 times a day 70
123 Denissen_2008 Denissen_2008 NA good good 1233 27.67 9.77 88.60 NA Germany 30 days 1 time a day 30
133 Dunkley_2014_wave1 Dunkley_2014 wave1 good good 196 40.94 12.25 66.33 78.00 Canada 14 days 1 time a day 14
148 Eid_1999 Eid_1999 NA fair good 180 NA NA 55.00 NA US 51 days 1 time a day 51
183 Galla_2015 Galla_2015 NA good fair 129 14.70 0.35 59.00 85.00 US 14 days 1 time a day 14
185 Gartland_2014 Gartland_2014 NA good fair 103 35.00 NA 70.87 90.30 United Kingdom 14 days 1 time a day 14
195 Geukes_2017_wave1 Geukes_2017 wave1 fair fair 131 21.01 3.65 81.00 NA Germany 21 days event-contingent 112
205 Hisler_2020_sample1 Hisler_2020 sample1 good good 211 18.78 1.05 58.00 NA US 30 days 1 time a day 30
207 Howland_2017_wave1 Howland_2017 wave1 good good 575 18.76 1.09 52.00 86.00 US 30 days 1 time a day 30
208 Jimenez_2022_study2 Jimenez_2022 study2 good fair 279 18.94 1.21 57.20 59.50 US 7 days 5 times a day 35
218 Jones_2022 Jones_2022 NA good good 121 42.10 12.01 60.00 89.00 US 7 days 8 times a day 56
238 Kalokerinos_2017 Kalokerinos_2017 NA fair fair 114 35.23 11.87 50.00 NA NA 7 days 1 time a day 7
248 Komulainen_2014 Komulainen_2014 NA good good 104 23.00 3.69 82.69 NA Finland 7 days 10 times a day 70
258 Kritzler_2020 Kritzler_2020 NA good fair 206 25.17 8.03 79.61 NA Germany 7 days 5 times a day 35
268 Kroencke_2020 Kroencke_2020 NA good good 1609 33.70 12.70 78.00 NA Germany 14 days 6 times a day 84
273 Kuijpers_2022_study1 Kuijpers_2022 study1 fair good 92 30.00 11.84 62.00 NA Belgium 20 days 5 times a day 100
274 Kuijpers_2022_study2 Kuijpers_2022 study2 good good 80 32.00 12.50 57.00 NA Belgium 10 days 3 times a day 30
275 Kukk_2022 Kukk_2022 NA good good 96 21.50 6.70 100.00 100.00 Estonia 3 days 7 times a day 21
285 Kuppens_2007_study1 Kuppens_2007 study1 good good 58 22.00 NA 68.97 NA Belgium 7 days 9 times a day 63
290 Laferton_2020 Laferton_2020 NA good good 98 25.46 6.65 83.70 NA Austria, Germany, Switzerland 10 days 1 time a day 10
292 Leki_2017_study3 Leki_2017 study3 good good 52 19.54 NA 65.38 NA US 21 days 1 time a day 21
298 Mey_2020 Mey_2020 NA good good 70 23.93 3.15 59.00 NA Germany 28 days 5 times a day 140
299 Mill_2016 Mill_2016 NA fair fair 110 44.75 3.25 63.64 NA Estonia 14 days 7 times a day 98
314 Ottenstein_2020 Ottenstein_2020 NA good good 72 22.85 2.40 68.00 NA Germany 21 days 3 times a day 63
320 Pavani_2017 Pavani_2017 NA good good 78 44.55 18.01 62.00 NA France 14 days 5 times a day 70
324 Pelt_2020 Pelt_2020 NA good fair 1223 29.47 10.49 86.26 NA Germany 30 days 1 time a day 30
334 Roberts_1997 Roberts_1997 NA good good 92 18.70 1.30 100.00 NA US 7 days 1 time a day 7
338 Slavish_2018 Slavish_2018 NA good good 242 46.80 10.90 66.50 27.30 US 14 days 2 times a day 28
348 Steffens_2017 Steffens_2017 NA fair good 32 28.80 5.60 53.13 NA Canada 7 days 11 times a day 77
353 Sun_2017_study3 Sun_2017 study3 good good 62 21.40 3.55 62.90 NA Australia 7 days 6 times a day 42
354 Watson_1992_study2 Watson_1992 study2 fair fair 127 NA NA NA NA US 45 days 1 time a day 45
364 Watson_unpub_study1 Watson_unpub study1 NA NA 366 NA NA 71.31 NA US 55 days 1 time a day 55
374 Watson_unpub_study2 Watson_unpub study2 NA NA 295 NA NA 69.49 NA US 55 days 1 time a day 55
384 Weltz_2016 Weltz_2016 NA good good 1634 19.23 1.41 53.70 79.60 US 30 day 1 time a day 30
385 Wenzel_2015_study2 Wenzel_2015 study2 fair good 108 25.20 6.60 80.56 NA Germany 6 days 1 time a day 6
390 Willroth_2020_sampleUSCA Willroth_2020 sampleUSCA good good 130 47.00 17.00 97.48 56.00 US 16 days 1 time a day 16
392 Willroth_2020_sampleUSUG Willroth_2020 sampleUSUG good fair 184 19.00 2.00 72.11 26.00 US 21 days 1 time a day 21
394 Wilson_2017_sample1 Wilson_2017 sample1 good fair 124 20.10 2.30 67.00 43.50 US 6 days 6 times a day 36
404 Wilson_2017_sample2 Wilson_2017 sample2 good fair 415 19.30 2.00 68.00 50.00 US 14 days 4 times a day 56
412 Wilt_2017_sample1 Wilt_2017 sample1 good good 40 23.50 5.61 72.50 NA US 14 days 6 times a day 84
416 Wilt_2017_sample2 Wilt_2017 sample2 good good 40 20.60 2.22 82.50 NA US 14 days 6 times a day 84
420 Wilt_2012_sample1 Wilt_2012 sample1 fair good 44 NA NA NA NA US 13 days 5 times a day 65
421 Wilt_2012_sample2 Wilt_2012 sample2 fair good 62 27.90 NA NA NA US 10 days 5 times a day 50
422 Wilt_2012_sample3 Wilt_2012 sample3 fair good 48 NA NA NA NA US 10 weeks 1 time a week 10
423 Wilt_2012_sample4 Wilt_2012 sample4 fair good 97 NA NA NA NA US 10 weeks 1 time a week 10
424 Wilt_2019 Wilt_2019 NA good good 78 26.60 7.90 80.77 66.67 US 7 days 4 times a day 28
434 Windsor_2021 Windsor_2021 NA good good 73 88.71 2.99 67.00 NA Australia 7 days 5 times a day 35
436 Zhang_2019 Zhang_2019 NA good good 139 19.50 1.07 73.00 NA China 14 days 1 time a day 14
446 Long_2003 Long_2003 NA good good 163 20.00 NA 80.98 NA US 7 days 1 time a day 7
456 Mackinnon_2021_sample1 Mackinnon_2021 sample1 good good 263 21.37 1.89 79.80 78.30 Canada 20 days 1 time a day 20
466 Ryvkina_2023_S1W1 Ryvkina_2023 S1W1 good good 313 23.00 6.80 78.20 NA Germany 14 days 6 times a day 84
468 Ryvkina_2023_S2W2 Ryvkina_2023 S2W2 good good 914 41.00 12.40 80.60 NA Germany 14 days 6 times a day 84
478 Shui_2023 Shui_2023 NA good good 80 19.10 NA NA NA China 14 days 1 time a day 14
488 Smith-Pickering_2022 Smith-Pickering_2022 NA good good 290 31.85 1.98 60.00 51.20 NA 13 days 1 time a day 13
498 Smith-DeNunzio_2022 Smith-DeNunzio_2022 NA good good 114 36.20 9.30 48.00 86.00 NA 5 days 1 time a day 5
501 Sweeny_2020_study1 Sweeny_2020 study1 good fair 120 NA NA 68.00 17.00 US 4 days 1 time a day 4
505 Sweeny_2020_study2 Sweeny_2020 study2 good fair 203 NA NA 61.00 67.00 US 4 months 2 times a month 8
509 Sweeny_unpub Sweeny_unpub NA NA NA 102 27.61 7.16 53.00 63.00 NA 8 days 1 time a day 8
519 Kalokerinos_2019_study2 Kalokerinos_2019 study2 NA NA 101 18.64 1.45 NA NA Belgium 9 days 10 times a day 90
529 Grommisch_2020 Grommisch_2020 NA NA NA 179 27.02 8.98 65.00 NA Australia 21 days 9 times a day 189
539 Erbas_2018_wave1 Erbas_2018 wave1 NA NA 200 18.32 0.97 55.00 NA Belgium 7 days 10 times a day 70
549 Haines_2016 Haines_2016 NA NA NA 78 23.26 3.54 61.00 NA Australia 4 days 10 times a day 40
559 Sels_2017 Sels_2017 NA NA NA 100 27.75 10.60 50.00 NA Belgium 7 days 10 times a day 70
569 Brans_2013_study2 Brans_2013 study2 NA NA 95 19.06 1.28 62.11 NA Belgium 7 days 10 times a day 70
579 Pasyugina_2015 Pasyugina_2015 NA NA NA 101 21.40 2.15 73.70 NA Belgium 9 days 10 times a day 90
589 Medland_2020 Medland_2020 NA NA NA 132 21.14 3.51 66.70 18.20 Australia 7 days 8 times a day 56
594 Kuppens_2010_study2 Kuppens_2010 study2 NA NA 60 23.00 NA 66.67 NA Belgium 4 days 50 times a day 200
599 Koval_2019_study1 Koval_2019 study1 NA NA 81 22.33 5.47 100.00 46.90 Australia 7 days 10 times a day 70
609 Koval_2019_study2 Koval_2019 study2 NA NA 87 23.52 4.11 100.00 32.20 Australia 7 days 10 times a day 70
619 Koval_2019_study3 Koval_2019 study3 NA NA 100 26.46 6.12 100.00 65.00 US 7 days 10 times a day 70
629 Dejonckheere_2019 Dejonckheere_2019 NA NA NA 100 24.12 6.87 77.00 NA Belgium 14 days 7 times a day 98
639 Kalokerinos_unpub Kalokerinos_unpub NA NA NA NA NA NA NA NA United Kingdom 7 days 1 time a day 7
649 Greenaway_unpub Greenaway_unpub NA NA NA NA NA NA NA NA United Kingdom 7 days 1 time a day 7

II. Descriptives

1. General Information

There are a total of 658 effects from 88 studies/samples from 73 papers, with a total of \(N =\) 20813 people.

# numeric descriptives
dat %>% select(ID, Sample_Size, Age_Mean, Female_Perc, White_Perc, Time_No) %>%
  unique() %>%
  select(-ID) %>%
  descr(stats = "common", order = "p")

Descriptive Statistics
dat
N: 88

Sample_Size Age_Mean Female_Perc White_Perc Time_No
Mean 247.36 27.29 67.96 64.30 48.53
Std.Dev 402.37 10.88 15.16 23.42 39.58
Min 32.00 14.70 9.00 17.00 4.00
Median 109.00 23.50 66.85 66.84 39.50
Max 2626.00 88.71 100.00 100.00 200.00
N.Valid 86.00 77.00 78.00 32.00 88.00
Pct.Valid 97.73 87.50 88.64 36.36 100.00
# frequencies of samples
freq(dat %>% select(ID, Location) %>% unique() %>% pull(Location), order = "freq")

Frequencies

Freq % Valid % Valid Cum. % Total % Total Cum.
US 31 37.35 37.35 35.23 35.23
Belgium 12 14.46 51.81 13.64 48.86
Germany 10 12.05 63.86 11.36 60.23
Australia 8 9.64 73.49 9.09 69.32
Canada 4 4.82 78.31 4.55 73.86
New Zealand 4 4.82 83.13 4.55 78.41
United Kingdom 3 3.61 86.75 3.41 81.82
Austria, Germany, Switzerland 2 2.41 89.16 2.27 84.09
China 2 2.41 91.57 2.27 86.36
Estonia 2 2.41 93.98 2.27 88.64
France 2 2.41 96.39 2.27 90.91
Italy 2 2.41 98.80 2.27 93.18
Finland 1 1.20 100.00 1.14 94.32
5 5.68 100.00
Total 88 100.00 100.00 100.00 100.00
freq(dat %>% select(ID, Frequency) %>% unique() %>% pull(Frequency), order = "freq")

Frequencies

Freq % Valid % Valid Cum. % Total % Total Cum.
1 time a day 37 42.05 42.05 42.05 42.05
10 times a day 12 13.64 55.68 13.64 55.68
5 times a day 10 11.36 67.05 11.36 67.05
6 times a day 8 9.09 76.14 9.09 76.14
3 times a day 5 5.68 81.82 5.68 81.82
7 times a day 3 3.41 85.23 3.41 85.23
1 time a week 2 2.27 87.50 2.27 87.50
4 times a day 2 2.27 89.77 2.27 89.77
8 times a day 2 2.27 92.05 2.27 92.05
9 times a day 2 2.27 94.32 2.27 94.32
11 times a day 1 1.14 95.45 1.14 95.45
2 times a day 1 1.14 96.59 1.14 96.59
2 times a month 1 1.14 97.73 1.14 97.73
50 times a day 1 1.14 98.86 1.14 98.86
event-contingent 1 1.14 100.00 1.14 100.00
0 0.00 100.00
Total 88 100.00 100.00 100.00 100.00
freq(dat %>% select(ID, Personality) %>% unique() %>% pull(Personality), order = "freq")

Frequencies

Freq % Valid % Valid Cum. % Total % Total Cum.
N 79 24.09 24.09 24.09 24.09
E 72 21.95 46.04 21.95 46.04
C 63 19.21 65.24 19.21 65.24
A 58 17.68 82.93 17.68 82.93
O 56 17.07 100.00 17.07 100.00
0 0.00 100.00
Total 328 100.00 100.00 100.00 100.00
freq(dat %>% select(ID, Emotion_Cat) %>% unique() %>% pull(Emotion_Cat), order = "freq")

Frequencies

Freq % Valid % Valid Cum. % Total % Total Cum.
pa 76 48.72 48.72 48.72 48.72
na 73 46.79 95.51 46.79 95.51
neu 7 4.49 100.00 4.49 100.00
0 0.00 100.00
Total 156 100.00 100.00 100.00 100.00
freq(dat %>% select(ID, Raw) %>% unique() %>% pull(Raw), order = "freq")

Frequencies

Freq % Valid % Valid Cum. % Total % Total Cum.
yes 80 90.91 90.91 90.91 90.91
no 8 9.09 100.00 9.09 100.00
0 0.00 100.00
Total 88 100.00 100.00 100.00 100.00
freq(dat %>% select(ID, Study_Quality) %>% unique() %>% pull(Study_Quality), order = "freq")

Frequencies

Freq % Valid % Valid Cum. % Total % Total Cum.
good 54 77.14 77.14 61.36 61.36
fair 16 22.86 100.00 18.18 79.55
18 20.45 100.00
Total 88 100.00 100.00 100.00 100.00

Kappa’s agreement on study quality ratings and proportion of agreement:

# kappa's agreement on study quality ratings
rating_dat <- dat %>% 
         select(ID, Study_Quality, Study_Quality_Reli) %>% 
         unique() %>% 
         select(Study_Quality, Study_Quality_Reli)
kappa2(ratings = rating_dat)
##  Cohen's Kappa for 2 Raters (Weights: unweighted)
## 
##  Subjects = 70 
##    Raters = 2 
##     Kappa = 0.109 
## 
##         z = 0.91 
##   p-value = 0.363
# proportion of agreement
sum(rating_dat$Study_Quality == rating_dat$Study_Quality_Reli, na.rm=T)/
  nrow(na.omit(rating_dat)) * 100
## [1] 68.57143

Kappa’s agreement on abstract screening and proportion of agreement:

# clean rayyan
rayyan$notes <- sub(".*?\\{", "", rayyan$notes)
rayyan$notes <- sub("\\}.*", "", rayyan$notes)
rayyan <- separate(rayyan, notes, into = paste0("decision_", 1:2), sep = ",")
rayyan$decision_1 <- sub(".*?>", "", rayyan$decision_1)
rayyan$decision_2 <- sub(".*?>", "", rayyan$decision_2)
rayyan$decision_1 <- gsub('"', '', rayyan$decision_1)
rayyan$decision_2 <- gsub('"', '', rayyan$decision_2)
rayyan$decision_1 <- sub("Maybe", "Included", rayyan$decision_1)
rayyan$decision_2 <- sub("Maybe", "Included", rayyan$decision_2)

# kappa's agreement
kappa2(ratings = rayyan)
##  Cohen's Kappa for 2 Raters (Weights: unweighted)
## 
##  Subjects = 4848 
##    Raters = 2 
##     Kappa = 0.383 
## 
##         z = 27.2 
##   p-value = 0
# proportion of agreement
sum(rayyan$decision_1 == rayyan$decision_2, na.rm=T)/
  nrow(na.omit(rayyan)) * 100
## [1] 80.44554
# compute sampling variances `vi` for Cor_SD
dat <- escalc(measure = "COR",
              ri = Cor_SD,
              ni = Cor_N, 
              data = dat,
              slab = ID) %>% select(-yi) %>%
  rename(vi_SD = vi)

# compute sampling variances `vi` for Cor_RVI
dat <- escalc(measure = "COR",
              ri = Cor_RVI,
              ni = Cor_N, 
              data = dat,
              slab = ID) %>% select(-yi) %>%
  rename(vi_RVI = vi)

# compute sampling variances `vi` for Cor_Mean
dat <- escalc(measure = "COR",
              ri = Cor_Mean,
              ni = Cor_N, 
              data = dat,
              slab = ID) %>% select(-yi) %>%
  rename(vi_Mean = vi)

# compute sampling variances `vi` for Cor_BCLSM
dat <- escalc(measure = "COR",
              ri = Cor_BCLSM,
              ni = BCLSM_N, 
              data = dat,
              slab = ID) %>% select(-yi) %>%
  rename(vi_BCLSM = vi)

# initialize table for all results
results_df <- data.frame(
  trait = rep(c("A", "C", "E", "N", "O"), each = 3),
  emo = c("all", "pa", "na"),
  cor_SD = NA,
  p_SD = NA,
  CI_SD = NA,
  k_SD = NA,
  Q_SD = NA,
  Qp_SD = NA,
  PI_SD = NA,
  I2_SD = NA,
  tau2_SD = NA,
  cor_RVI = NA,
  p_RVI = NA,
  CI_RVI = NA,
  k_RVI = NA,
  Q_RVI = NA,
  Qp_RVI = NA,
  PI_RVI = NA,
  I2_RVI = NA,
  tau2_RVI = NA,
  cor_BCLSM = NA,
  p_BCLSM = NA,
  CI_BCLSM = NA,
  k_BCLSM = NA,
  Q_BCLSM = NA,
  Qp_BCLSM = NA,
  PI_BCLSM = NA,
  I2_BCLSM = NA,
  tau2_BCLSM = NA
)

2. Compare SD and RVI

These un-preregistered exploratory analyses aim to further clarify the relationship between the two metrics: SD and RVI, especially in relation to the mean and scale boundaries.

# create an index of how far away from the boundaries the mean is
dat <- dat %>%
  rowwise() %>%
  mutate(
    # distance from the closer boundary (min or max)
    mean_dist = min(Mean_Affect - Min, Max - Mean_Affect)
  )
# divide by whole range
dat$mean_dist <- dat$mean_dist/(dat$Max - dat$Min)
dat$mean_relative <- dat$Mean_Affect/dat$Max

# create unique data frame of only emotions
dat_emo <- dat %>% 
  select(ID, Emotion_Cat, Mean_SD, Mean_RVI, SD_RVI, mean_dist, mean_relative) %>%
  unique()

# descriptives of correlations between
#   (1) mean and sd
#   (2) mean and rvi
#   (3) sd and rvi
# and distance from boundaries
dat_emo %>%
  group_by(Emotion_Cat) %>%
  select(mean_dist, mean_relative, Mean_SD, Mean_RVI, SD_RVI) %>%
  descr(stats = "common")

Descriptive Statistics
dat_emo
Group: Emotion_Cat = na
N: 77

mean_dist mean_relative Mean_RVI Mean_SD SD_RVI
Mean 0.18 0.29 -0.16 0.56 0.45
Std.Dev 0.08 0.11 0.18 0.16 0.27
Min 0.05 0.09 -0.58 -0.13 -0.27
Median 0.18 0.32 -0.15 0.57 0.50
Max 0.47 0.63 0.25 0.86 0.98
N.Valid 69.00 69.00 69.00 69.00 69.00
Pct.Valid 89.61 89.61 89.61 89.61 89.61

Group: Emotion_Cat = neu
N: 7

mean_dist mean_relative Mean_RVI Mean_SD SD_RVI
Mean 0.32 0.58 -0.01 -0.07 0.78
Std.Dev 0.09 0.18 0.30 0.37 0.37
Min 0.12 0.29 -0.52 -0.43 -0.04
Median 0.35 0.65 -0.03 -0.18 0.92
Max 0.39 0.74 0.42 0.68 0.99
N.Valid 7.00 7.00 7.00 7.00 7.00
Pct.Valid 100.00 100.00 100.00 100.00 100.00

Group: Emotion_Cat = pa
N: 78

mean_dist mean_relative Mean_RVI Mean_SD SD_RVI
Mean 0.40 0.56 -0.05 -0.04 0.85
Std.Dev 0.08 0.10 0.19 0.25 0.20
Min 0.07 0.20 -0.62 -0.60 -0.04
Median 0.41 0.57 -0.07 -0.06 0.91
Max 0.50 0.75 0.41 0.78 0.99
N.Valid 71.00 71.00 71.00 71.00 71.00
Pct.Valid 91.03 91.03 91.03 91.03 91.03
# scatterplot between distance from boundaries and correlation between SD and RVI
ggplot(data = na.omit(dat_emo),
       aes(x = mean_dist, y = SD_RVI, 
           color = Emotion_Cat,
           shape = Emotion_Cat)) +
  geom_point(size = 2) +
  theme_classic() +
  labs(
    x = "Distance from scale boundaries in proportion",
    y = "Correlation between SD and RVI",
    title = paste(
      "Scatterplot between distance from boundaries and SD-RVI correlations\n",
      "r =", round(cor(dat_emo$mean_dist, dat_emo$SD_RVI, use = "pair"), 2),
      "p < .001"),
    color = "Emotion Type",
    shape = "Emotion Type"
  )

# scatterplot between distance from boundaries and mean-SD correlations
ggplot(data = na.omit(dat_emo),
       aes(x = mean_dist, y = Mean_SD, 
           color = Emotion_Cat,
           shape = Emotion_Cat)) +
  geom_point(size = 2) +
  theme_classic() +
  labs(
    x = "Distance from scale boundaries in proportion",
    y = "Correlation between mean and SD",
    title = paste(
      "Scatterplot between distance from boundaries and mean-SD correlations\n",
      "r =", round(cor(dat_emo$mean_dist, dat_emo$Mean_SD, use = "pair"), 2),
      "p < .001"),
    color = "Emotion Type",
    shape = "Emotion Type"
  )

# scatterplot between distance from boundaries and mean-RVI correlations
ggplot(data = na.omit(dat_emo),
       aes(x = mean_dist, y = Mean_RVI, 
           color = Emotion_Cat,
           shape = Emotion_Cat)) +
  geom_point(size = 2) +
  theme_classic() +
  labs(
    x = "Distance from scale boundaries in proportion",
    y = "Correlation between mean and RVI",
    title = paste(
      "Scatterplot between distance from boundaries and mean-RVI correlations\n",
      "r =", round(cor(dat_emo$mean_dist, dat_emo$Mean_RVI, use = "pair"), 2),
      "p < .001"),
    color = "Emotion Type",
    shape = "Emotion Type"
  )

# histogram of relative means
ggplot(data = na.omit(dat_emo[dat_emo$Emotion_Cat == "na",]),
       aes(x = mean_relative)) + 
  geom_histogram(binwidth = 0.03,
                 color = "#E69F00",
                 fill = "#710c0c") +
  theme_classic() +
  labs(
    title = "Histogram of Mean-Level on Negative Affect",
    x = "Relative Mean Level"
  ) + 
  xlim(0.1, 1.0)
## Warning: Removed 1 rows containing non-finite values (`stat_bin()`).
## Warning: Removed 2 rows containing missing values (`geom_bar()`).

ggplot(data = na.omit(dat_emo[dat_emo$Emotion_Cat == "pa",]),
       aes(x = mean_relative)) + 
  geom_histogram(binwidth = 0.03,
                 color = "#E69F00",
                 fill = "#710c0c") +
  theme_classic() +
  labs(
    title = "Histogram of Mean-Level on Positive Affect",
    x = "Relative Mean Level"
  ) +
  xlim(0.1, 1.0)
## Warning: Removed 2 rows containing missing values (`geom_bar()`).

III. Results

1. Neuroticism

results_df <- fit_meta(trait = "N", .data = dat, output = results_df)

## 
## Multivariate Meta-Analysis Model (k = 150; method: REML)
## 
## Variance Components:
## 
## outer factor: ID                  (nlvls = 74)
## inner factor: factor(Emotion_Cat) (nlvls = 2)
## 
##             estim    sqrt  fixed 
## tau^2      0.0044  0.0662     no 
## rho        0.4273             no 
## 
## Test for Residual Heterogeneity:
## QE(df = 148) = 310.5485, p-val < .0001
## 
## Number of estimates:   150
## Number of clusters:    74
## Estimates per cluster: 1-7 (mean: 2.03, median: 2)
## 
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 53.61) = 230.9184, p-val < .0001
## 
## Model Results:
## 
##                        estimate      se¹      tval¹     df¹    pval¹    ci.lb¹ 
## intrcpt                  0.3033  0.0117    25.9549    59.4   <.0001    0.2799  
## factor(Emotion_Cat)pa   -0.2248  0.0148   -15.1960   53.61   <.0001   -0.2544  
##                          ci.ub¹      
## intrcpt                 0.3267   *** 
## factor(Emotion_Cat)pa  -0.1951   *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 1) results based on cluster-robust inference (var-cov estimator: CR2,
##    approx t/F-tests and confidence intervals, df: Satterthwaite approx)

## 
## Multivariate Meta-Analysis Model (k = 122; method: REML)
## 
## Variance Components:
## 
## outer factor: ID                    (nlvls = 61)
## inner factor: factor(Study_Quality) (nlvls = 2)
## 
##             estim    sqrt  fixed 
## tau^2      0.0058  0.0765     no 
## rho        0.5000             no 
## 
## Test for Residual Heterogeneity:
## QE(df = 120) = 829.9909, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.0469, p-val = 0.8286
## 
## Model Results:
## 
##                            estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt                      0.2183  0.0300   7.2872  <.0001   0.1596  0.2770 
## factor(Study_Quality)good   -0.0071  0.0329  -0.2166  0.8286  -0.0715  0.0573 
##                                
## intrcpt                    *** 
## factor(Study_Quality)good      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 
## Multivariate Meta-Analysis Model (k = 133; method: REML)
## 
## Variance Components:
## 
## outer factor: ID                  (nlvls = 68)
## inner factor: factor(Emotion_Cat) (nlvls = 2)
## 
##             estim    sqrt  fixed 
## tau^2      0.0086  0.0926     no 
## rho        0.5067             no 
## 
## Test for Residual Heterogeneity:
## QE(df = 131) = 374.5068, p-val < .0001
## 
## Number of estimates:   133
## Number of clusters:    68
## Estimates per cluster: 1-4 (mean: 1.96, median: 2)
## 
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 52.71) = 47.9640, p-val < .0001
## 
## Model Results:
## 
##                        estimate      se¹     tval¹     df¹    pval¹    ci.lb¹ 
## intrcpt                 -0.0626  0.0165   -3.7876   58.54   0.0004   -0.0957  
## factor(Emotion_Cat)pa    0.1253  0.0181    6.9256   52.71   <.0001    0.0890  
##                          ci.ub¹      
## intrcpt                -0.0295   *** 
## factor(Emotion_Cat)pa   0.1616   *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 1) results based on cluster-robust inference (var-cov estimator: CR2,
##    approx t/F-tests and confidence intervals, df: Satterthwaite approx)

## 
## Multivariate Meta-Analysis Model (k = 109; method: REML)
## 
## Variance Components:
## 
## outer factor: ID                    (nlvls = 57)
## inner factor: factor(Study_Quality) (nlvls = 2)
## 
##             estim    sqrt  fixed 
## tau^2      0.0081  0.0902     no 
## rho        0.5000             no 
## 
## Test for Residual Heterogeneity:
## QE(df = 107) = 500.8071, p-val < .0001
## 
## Number of estimates:   109
## Number of clusters:    57
## Estimates per cluster: 1-4 (mean: 1.91, median: 2)
## 
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 9.88) = 1.0270, p-val = 0.3350
## 
## Model Results:
## 
##                            estimate      se¹     tval¹    df¹    pval¹ 
## intrcpt                      0.0293  0.0334    0.8764   7.32   0.4087  
## factor(Study_Quality)good   -0.0375  0.0370   -1.0134   9.88   0.3350  
##                              ci.lb¹   ci.ub¹    
## intrcpt                    -0.0490   0.1076     
## factor(Study_Quality)good  -0.1202   0.0451     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 1) results based on cluster-robust inference (var-cov estimator: CR2,
##    approx t/F-tests and confidence intervals, df: Satterthwaite approx)

## 
## Multivariate Meta-Analysis Model (k = 132; method: REML)
## 
## Variance Components:
## 
## outer factor: ID                  (nlvls = 67)
## inner factor: factor(Emotion_Cat) (nlvls = 2)
## 
##             estim    sqrt  fixed 
## tau^2      0.0078  0.0881     no 
## rho        0.7246             no 
## 
## Test for Residual Heterogeneity:
## QE(df = 130) = 322.5981, p-val < .0001
## 
## Number of estimates:   132
## Number of clusters:    67
## Estimates per cluster: 1-4 (mean: 1.97, median: 2)
## 
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 45.27) = 35.5427, p-val < .0001
## 
## Model Results:
## 
##                        estimate      se¹     tval¹     df¹    pval¹    ci.lb¹ 
## intrcpt                  0.1599  0.0158   10.1124   57.26   <.0001    0.1283  
## factor(Emotion_Cat)pa   -0.0926  0.0155   -5.9618   45.27   <.0001   -0.1238  
##                          ci.ub¹      
## intrcpt                 0.1916   *** 
## factor(Emotion_Cat)pa  -0.0613   *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 1) results based on cluster-robust inference (var-cov estimator: CR2,
##    approx t/F-tests and confidence intervals, df: Satterthwaite approx)

## 
## Multivariate Meta-Analysis Model (k = 108; method: REML)
## 
## Variance Components:
## 
## outer factor: ID                    (nlvls = 56)
## inner factor: factor(Study_Quality) (nlvls = 2)
## 
##             estim    sqrt  fixed 
## tau^2      0.0072  0.0849     no 
## rho        0.5000             no 
## 
## Test for Residual Heterogeneity:
## QE(df = 106) = 370.6036, p-val < .0001
## 
## Number of estimates:   108
## Number of clusters:    56
## Estimates per cluster: 1-4 (mean: 1.93, median: 2)
## 
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 9.93) = 0.0942, p-val = 0.7652
## 
## Model Results:
## 
##                            estimate      se¹     tval¹    df¹    pval¹ 
## intrcpt                      0.1300  0.0430    3.0223   7.32   0.0183  
## factor(Study_Quality)good   -0.0139  0.0454   -0.3070   9.93   0.7652  
##                              ci.lb¹   ci.ub¹    
## intrcpt                     0.0292   0.2307   * 
## factor(Study_Quality)good  -0.1153   0.0874     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 1) results based on cluster-robust inference (var-cov estimator: CR2,
##    approx t/F-tests and confidence intervals, df: Satterthwaite approx)

2. Extraversion

results_df <- fit_meta(trait = "E", .data = dat, output = results_df)

## 
## Multivariate Meta-Analysis Model (k = 130; method: REML)
## 
## Variance Components:
## 
## outer factor: ID                  (nlvls = 66)
## inner factor: factor(Emotion_Cat) (nlvls = 2)
## 
##             estim    sqrt  fixed 
## tau^2      0.0065  0.0809     no 
## rho        0.7993             no 
## 
## Test for Residual Heterogeneity:
## QE(df = 128) = 273.5444, p-val < .0001
## 
## Number of estimates:   130
## Number of clusters:    66
## Estimates per cluster: 1-7 (mean: 1.97, median: 2)
## 
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 36.35) = 69.1654, p-val < .0001
## 
## Model Results:
## 
##                        estimate      se¹     tval¹     df¹    pval¹    ci.lb¹ 
## intrcpt                 -0.0507  0.0136   -3.7374   50.15   0.0005   -0.0779  
## factor(Emotion_Cat)pa    0.1240  0.0149    8.3166   36.35   <.0001    0.0938  
##                          ci.ub¹      
## intrcpt                -0.0235   *** 
## factor(Emotion_Cat)pa   0.1542   *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 1) results based on cluster-robust inference (var-cov estimator: CR2,
##    approx t/F-tests and confidence intervals, df: Satterthwaite approx)

## 
## Multivariate Meta-Analysis Model (k = 103; method: REML)
## 
## Variance Components:
## 
## outer factor: ID                    (nlvls = 54)
## inner factor: factor(Study_Quality) (nlvls = 2)
## 
##             estim    sqrt  fixed 
## tau^2      0.0055  0.0740     no 
## rho        0.5000             no 
## 
## Test for Residual Heterogeneity:
## QE(df = 101) = 365.6576, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 1.9100, p-val = 0.1670
## 
## Model Results:
## 
##                            estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt                      0.0402  0.0285   1.4113  0.1582  -0.0156  0.0961 
## factor(Study_Quality)good   -0.0448  0.0324  -1.3820  0.1670  -0.1084  0.0187 
##                              
## intrcpt                      
## factor(Study_Quality)good    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 
## Multivariate Meta-Analysis Model (k = 113; method: REML)
## 
## Variance Components:
## 
## outer factor: ID                  (nlvls = 60)
## inner factor: factor(Emotion_Cat) (nlvls = 2)
## 
##             estim    sqrt  fixed 
## tau^2      0.0039  0.0623     no 
## rho        1.0000             no 
## 
## Test for Residual Heterogeneity:
## QE(df = 111) = 190.1526, p-val < .0001
## 
## Number of estimates:   113
## Number of clusters:    60
## Estimates per cluster: 1-4 (mean: 1.88, median: 2)
## 
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 15.86) = 7.5824, p-val = 0.0142
## 
## Model Results:
## 
##                        estimate      se¹     tval¹     df¹    pval¹    ci.lb¹ 
## intrcpt                  0.0790  0.0127    6.2388   39.33   <.0001    0.0534  
## factor(Emotion_Cat)pa   -0.0330  0.0120   -2.7536   15.86   0.0142   -0.0585  
##                          ci.ub¹      
## intrcpt                 0.1046   *** 
## factor(Emotion_Cat)pa  -0.0076     * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 1) results based on cluster-robust inference (var-cov estimator: CR2,
##    approx t/F-tests and confidence intervals, df: Satterthwaite approx)

## 
## Multivariate Meta-Analysis Model (k = 90; method: REML)
## 
## Variance Components:
## 
## outer factor: ID                    (nlvls = 50)
## inner factor: factor(Study_Quality) (nlvls = 2)
## 
##             estim    sqrt  fixed 
## tau^2      0.0030  0.0551     no 
## rho        0.5000             no 
## 
## Test for Residual Heterogeneity:
## QE(df = 88) = 156.9802, p-val < .0001
## 
## Number of estimates:   90
## Number of clusters:    50
## Estimates per cluster: 1-4 (mean: 1.80, median: 2)
## 
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 13.8) = 1.7301, p-val = 0.2098
## 
## Model Results:
## 
##                            estimate      se¹     tval¹    df¹    pval¹ 
## intrcpt                      0.0839  0.0218    3.8542   9.47   0.0035  
## factor(Study_Quality)good   -0.0339  0.0257   -1.3153   13.8   0.2098  
##                              ci.lb¹   ci.ub¹     
## intrcpt                     0.0350   0.1327   ** 
## factor(Study_Quality)good  -0.0892   0.0214      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 1) results based on cluster-robust inference (var-cov estimator: CR2,
##    approx t/F-tests and confidence intervals, df: Satterthwaite approx)

## 
## Multivariate Meta-Analysis Model (k = 113; method: REML)
## 
## Variance Components:
## 
## outer factor: ID                  (nlvls = 60)
## inner factor: factor(Emotion_Cat) (nlvls = 2)
## 
##             estim    sqrt  fixed 
## tau^2      0.0056  0.0746     no 
## rho        0.9977             no 
## 
## Test for Residual Heterogeneity:
## QE(df = 111) = 203.0535, p-val < .0001
## 
## Number of estimates:   113
## Number of clusters:    60
## Estimates per cluster: 1-4 (mean: 1.88, median: 2)
## 
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 15.18) = 40.5171, p-val < .0001
## 
## Model Results:
## 
##                        estimate      se¹     tval¹     df¹    pval¹    ci.lb¹ 
## intrcpt                 -0.0040  0.0139   -0.2896   42.92   0.7735   -0.0320  
## factor(Emotion_Cat)pa    0.0797  0.0125    6.3653   15.18   <.0001    0.0530  
##                         ci.ub¹      
## intrcpt                0.0239       
## factor(Emotion_Cat)pa  0.1064   *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 1) results based on cluster-robust inference (var-cov estimator: CR2,
##    approx t/F-tests and confidence intervals, df: Satterthwaite approx)

## 
## Multivariate Meta-Analysis Model (k = 90; method: REML)
## 
## Variance Components:
## 
## outer factor: ID                    (nlvls = 50)
## inner factor: factor(Study_Quality) (nlvls = 2)
## 
##             estim    sqrt  fixed 
## tau^2      0.0043  0.0656     no 
## rho        0.5000             no 
## 
## Test for Residual Heterogeneity:
## QE(df = 88) = 196.6602, p-val < .0001
## 
## Number of estimates:   90
## Number of clusters:    50
## Estimates per cluster: 1-4 (mean: 1.80, median: 2)
## 
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 14.83) = 2.3764, p-val = 0.1442
## 
## Model Results:
## 
##                            estimate      se¹     tval¹     df¹    pval¹ 
## intrcpt                      0.0722  0.0243    2.9652    9.89   0.0143  
## factor(Study_Quality)good   -0.0443  0.0287   -1.5416   14.83   0.1442  
##                              ci.lb¹   ci.ub¹    
## intrcpt                     0.0179   0.1265   * 
## factor(Study_Quality)good  -0.1056   0.0170     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 1) results based on cluster-robust inference (var-cov estimator: CR2,
##    approx t/F-tests and confidence intervals, df: Satterthwaite approx)

3. Agreeableness

results_df <- fit_meta(trait = "A", .data = dat, output = results_df)

## 
## Multivariate Meta-Analysis Model (k = 112; method: REML)
## 
## Variance Components:
## 
## outer factor: ID                  (nlvls = 53)
## inner factor: factor(Emotion_Cat) (nlvls = 2)
## 
##             estim    sqrt  fixed 
## tau^2      0.0088  0.0939     no 
## rho        0.8579             no 
## 
## Test for Residual Heterogeneity:
## QE(df = 110) = 269.6759, p-val < .0001
## 
## Number of estimates:   112
## Number of clusters:    53
## Estimates per cluster: 1-7 (mean: 2.11, median: 2)
## 
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 31.84) = 44.3148, p-val < .0001
## 
## Model Results:
## 
##                        estimate      se¹     tval¹     df¹    pval¹    ci.lb¹ 
## intrcpt                 -0.1045  0.0163   -6.4158   45.96   <.0001   -0.1373  
## factor(Emotion_Cat)pa    0.1022  0.0154    6.6569   31.84   <.0001    0.0709  
##                          ci.ub¹      
## intrcpt                -0.0717   *** 
## factor(Emotion_Cat)pa   0.1335   *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 1) results based on cluster-robust inference (var-cov estimator: CR2,
##    approx t/F-tests and confidence intervals, df: Satterthwaite approx)

## 
## Multivariate Meta-Analysis Model (k = 84; method: REML)
## 
## Variance Components:
## 
## outer factor: ID                    (nlvls = 40)
## inner factor: factor(Study_Quality) (nlvls = 2)
## 
##             estim    sqrt  fixed 
## tau^2      0.0106  0.1032     no 
## rho        0.5000             no 
## 
## Test for Residual Heterogeneity:
## QE(df = 82) = 310.0257, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.0338, p-val = 0.8540
## 
## Model Results:
## 
##                            estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt                     -0.0713  0.0421  -1.6916  0.0907  -0.1539  0.0113 
## factor(Study_Quality)good    0.0087  0.0472   0.1840  0.8540  -0.0838  0.1012 
##                              
## intrcpt                    . 
## factor(Study_Quality)good    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 
## Multivariate Meta-Analysis Model (k = 97; method: REML)
## 
## Variance Components:
## 
## outer factor: ID                  (nlvls = 48)
## inner factor: factor(Emotion_Cat) (nlvls = 2)
## 
##             estim    sqrt  fixed 
## tau^2      0.0091  0.0952     no 
## rho        0.8895             no 
## 
## Test for Residual Heterogeneity:
## QE(df = 95) = 232.6265, p-val < .0001
## 
## Number of estimates:   97
## Number of clusters:    48
## Estimates per cluster: 1-4 (mean: 2.02, median: 2)
## 
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 25.68) = 9.4137, p-val = 0.0050
## 
## Model Results:
## 
##                        estimate      se¹     tval¹     df¹    pval¹    ci.lb¹ 
## intrcpt                  0.0506  0.0168    3.0109   41.15   0.0044    0.0167  
## factor(Emotion_Cat)pa   -0.0492  0.0160   -3.0682   25.68   0.0050   -0.0821  
##                          ci.ub¹     
## intrcpt                 0.0845   ** 
## factor(Emotion_Cat)pa  -0.0162   ** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 1) results based on cluster-robust inference (var-cov estimator: CR2,
##    approx t/F-tests and confidence intervals, df: Satterthwaite approx)

## 
## Multivariate Meta-Analysis Model (k = 73; method: REML)
## 
## Variance Components:
## 
## outer factor: ID                    (nlvls = 37)
## inner factor: factor(Study_Quality) (nlvls = 2)
## 
##             estim    sqrt  fixed 
## tau^2      0.0092  0.0961     no 
## rho        0.5000             no 
## 
## Test for Residual Heterogeneity:
## QE(df = 71) = 212.5704, p-val < .0001
## 
## Number of estimates:   73
## Number of clusters:    37
## Estimates per cluster: 1-4 (mean: 1.97, median: 2)
## 
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 7.71) = 0.3587, p-val = 0.5664
## 
## Model Results:
## 
##                            estimate      se¹     tval¹    df¹    pval¹ 
## intrcpt                     -0.0184  0.0721   -0.2546    5.5   0.8082  
## factor(Study_Quality)good    0.0445  0.0744    0.5989   7.71   0.5664  
##                              ci.lb¹   ci.ub¹    
## intrcpt                    -0.1988   0.1621     
## factor(Study_Quality)good  -0.1281   0.2172     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 1) results based on cluster-robust inference (var-cov estimator: CR2,
##    approx t/F-tests and confidence intervals, df: Satterthwaite approx)

## 
## Multivariate Meta-Analysis Model (k = 97; method: REML)
## 
## Variance Components:
## 
## outer factor: ID                  (nlvls = 48)
## inner factor: factor(Emotion_Cat) (nlvls = 2)
## 
##             estim    sqrt  fixed 
## tau^2      0.0096  0.0982     no 
## rho        0.8740             no 
## 
## Test for Residual Heterogeneity:
## QE(df = 95) = 248.2551, p-val < .0001
## 
## Number of estimates:   97
## Number of clusters:    48
## Estimates per cluster: 1-4 (mean: 2.02, median: 2)
## 
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 26.78) = 4.9074, p-val = 0.0354
## 
## Model Results:
## 
##                        estimate      se¹     tval¹     df¹    pval¹    ci.lb¹ 
## intrcpt                 -0.0352  0.0184   -1.9177    41.4   0.0621   -0.0723  
## factor(Emotion_Cat)pa    0.0366  0.0165    2.2153   26.78   0.0354    0.0027  
##                         ci.ub¹    
## intrcpt                0.0019   . 
## factor(Emotion_Cat)pa  0.0706   * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 1) results based on cluster-robust inference (var-cov estimator: CR2,
##    approx t/F-tests and confidence intervals, df: Satterthwaite approx)

## 
## Multivariate Meta-Analysis Model (k = 73; method: REML)
## 
## Variance Components:
## 
## outer factor: ID                    (nlvls = 37)
## inner factor: factor(Study_Quality) (nlvls = 2)
## 
##             estim    sqrt  fixed 
## tau^2      0.0090  0.0948     no 
## rho        0.5000             no 
## 
## Test for Residual Heterogeneity:
## QE(df = 71) = 214.3815, p-val < .0001
## 
## Number of estimates:   73
## Number of clusters:    37
## Estimates per cluster: 1-4 (mean: 1.97, median: 2)
## 
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 7.73) = 0.9816, p-val = 0.3518
## 
## Model Results:
## 
##                            estimate      se¹     tval¹    df¹    pval¹ 
## intrcpt                     -0.0811  0.0715   -1.1352    5.5   0.3033  
## factor(Study_Quality)good    0.0730  0.0737    0.9908   7.73   0.3518  
##                              ci.lb¹   ci.ub¹    
## intrcpt                    -0.2599   0.0976     
## factor(Study_Quality)good  -0.0980   0.2440     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 1) results based on cluster-robust inference (var-cov estimator: CR2,
##    approx t/F-tests and confidence intervals, df: Satterthwaite approx)

4. Conscientiousness

results_df <- fit_meta(trait = "C", .data = dat, output = results_df)

## 
## Multivariate Meta-Analysis Model (k = 128; method: REML)
## 
## Variance Components:
## 
## outer factor: ID                  (nlvls = 58)
## inner factor: factor(Emotion_Cat) (nlvls = 2)
## 
##             estim    sqrt  fixed 
## tau^2      0.0029  0.0537     no 
## rho        1.0000             no 
## 
## Test for Residual Heterogeneity:
## QE(df = 126) = 181.8460, p-val = 0.0008
## 
## Number of estimates:   128
## Number of clusters:    58
## Estimates per cluster: 1-10 (mean: 2.21, median: 2)
## 
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 20.49) = 95.8076, p-val < .0001
## 
## Model Results:
## 
##                        estimate      se¹      tval¹     df¹    pval¹    ci.lb¹ 
## intrcpt                 -0.1211  0.0110   -10.9755   41.94   <.0001   -0.1434  
## factor(Emotion_Cat)pa    0.1074  0.0110     9.7881   20.49   <.0001    0.0845  
##                          ci.ub¹      
## intrcpt                -0.0988   *** 
## factor(Emotion_Cat)pa   0.1302   *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 1) results based on cluster-robust inference (var-cov estimator: CR2,
##    approx t/F-tests and confidence intervals, df: Satterthwaite approx)

## 
## Multivariate Meta-Analysis Model (k = 100; method: REML)
## 
## Variance Components:
## 
## outer factor: ID                    (nlvls = 45)
## inner factor: factor(Study_Quality) (nlvls = 2)
## 
##             estim    sqrt  fixed 
## tau^2      0.0017  0.0413     no 
## rho        0.5000             no 
## 
## Test for Residual Heterogeneity:
## QE(df = 98) = 203.0795, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.8303, p-val = 0.3622
## 
## Model Results:
## 
##                            estimate      se     zval    pval    ci.lb    ci.ub 
## intrcpt                     -0.0905  0.0257  -3.5162  0.0004  -0.1410  -0.0401 
## factor(Study_Quality)good    0.0254  0.0279   0.9112  0.3622  -0.0292   0.0800 
##                                
## intrcpt                    *** 
## factor(Study_Quality)good      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 
## Multivariate Meta-Analysis Model (k = 105; method: REML)
## 
## Variance Components:
## 
## outer factor: ID                  (nlvls = 53)
## inner factor: factor(Emotion_Cat) (nlvls = 2)
## 
##             estim    sqrt  fixed 
## tau^2      0.0098  0.0992     no 
## rho        0.3678             no 
## 
## Test for Residual Heterogeneity:
## QE(df = 103) = 274.8285, p-val < .0001
## 
## Number of estimates:   105
## Number of clusters:    53
## Estimates per cluster: 1-4 (mean: 1.98, median: 2)
## 
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 43.52) = 5.6366, p-val = 0.0221
## 
## Model Results:
## 
##                        estimate      se¹     tval¹     df¹    pval¹    ci.lb¹ 
## intrcpt                  0.0510  0.0188    2.7212   44.76   0.0092    0.0133  
## factor(Emotion_Cat)pa   -0.0534  0.0225   -2.3742   43.52   0.0221   -0.0987  
##                          ci.ub¹     
## intrcpt                 0.0888   ** 
## factor(Emotion_Cat)pa  -0.0081    * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 1) results based on cluster-robust inference (var-cov estimator: CR2,
##    approx t/F-tests and confidence intervals, df: Satterthwaite approx)

## 
## Multivariate Meta-Analysis Model (k = 81; method: REML)
## 
## Variance Components:
## 
## outer factor: ID                    (nlvls = 42)
## inner factor: factor(Study_Quality) (nlvls = 2)
## 
##             estim    sqrt  fixed 
## tau^2      0.0079  0.0887     no 
## rho        0.5000             no 
## 
## Test for Residual Heterogeneity:
## QE(df = 79) = 265.1099, p-val < .0001
## 
## Number of estimates:   81
## Number of clusters:    42
## Estimates per cluster: 1-4 (mean: 1.93, median: 2)
## 
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 7.23) = 2.6208, p-val = 0.1482
## 
## Model Results:
## 
##                            estimate      se¹     tval¹    df¹    pval¹ 
## intrcpt                     -0.0459  0.0472   -0.9727   5.41   0.3722  
## factor(Study_Quality)good    0.0817  0.0505    1.6189   7.23   0.1482  
##                              ci.lb¹   ci.ub¹    
## intrcpt                    -0.1645   0.0727     
## factor(Study_Quality)good  -0.0369   0.2002     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 1) results based on cluster-robust inference (var-cov estimator: CR2,
##    approx t/F-tests and confidence intervals, df: Satterthwaite approx)

## 
## Multivariate Meta-Analysis Model (k = 103; method: REML)
## 
## Variance Components:
## 
## outer factor: ID                  (nlvls = 52)
## inner factor: factor(Emotion_Cat) (nlvls = 2)
## 
##             estim    sqrt  fixed 
## tau^2      0.0073  0.0857     no 
## rho        1.0000             no 
## 
## Test for Residual Heterogeneity:
## QE(df = 101) = 218.5766, p-val < .0001
## 
## Number of estimates:   103
## Number of clusters:    52
## Estimates per cluster: 1-4 (mean: 1.98, median: 2)
## 
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 15.03) = 8.7916, p-val = 0.0096
## 
## Model Results:
## 
##                        estimate      se¹     tval¹     df¹    pval¹    ci.lb¹ 
## intrcpt                 -0.0428  0.0156   -2.7362   43.45   0.0090   -0.0743  
## factor(Emotion_Cat)pa    0.0337  0.0114    2.9651   15.03   0.0096    0.0095  
##                          ci.ub¹     
## intrcpt                -0.0113   ** 
## factor(Emotion_Cat)pa   0.0579   ** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 1) results based on cluster-robust inference (var-cov estimator: CR2,
##    approx t/F-tests and confidence intervals, df: Satterthwaite approx)

## 
## Multivariate Meta-Analysis Model (k = 79; method: REML)
## 
## Variance Components:
## 
## outer factor: ID                    (nlvls = 41)
## inner factor: factor(Study_Quality) (nlvls = 2)
## 
##             estim    sqrt  fixed 
## tau^2      0.0060  0.0773     no 
## rho        0.5000             no 
## 
## Test for Residual Heterogeneity:
## QE(df = 77) = 169.9816, p-val < .0001
## 
## Number of estimates:   79
## Number of clusters:    41
## Estimates per cluster: 1-4 (mean: 1.93, median: 2)
## 
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 7.07) = 1.9392, p-val = 0.2060
## 
## Model Results:
## 
##                            estimate      se¹     tval¹    df¹    pval¹ 
## intrcpt                     -0.0977  0.0587   -1.6639   5.31   0.1536  
## factor(Study_Quality)good    0.0845  0.0607    1.3925   7.07   0.2060  
##                              ci.lb¹   ci.ub¹    
## intrcpt                    -0.2460   0.0506     
## factor(Study_Quality)good  -0.0587   0.2278     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 1) results based on cluster-robust inference (var-cov estimator: CR2,
##    approx t/F-tests and confidence intervals, df: Satterthwaite approx)

5. Openness

results_df <- fit_meta(trait = "O", .data = dat, output = results_df)

## 
## Multivariate Meta-Analysis Model (k = 107; method: REML)
## 
## Variance Components:
## 
## outer factor: ID                  (nlvls = 51)
## inner factor: factor(Emotion_Cat) (nlvls = 2)
## 
##             estim    sqrt  fixed 
## tau^2      0.0098  0.0992     no 
## rho        0.9363             no 
## 
## Test for Residual Heterogeneity:
## QE(df = 105) = 259.2885, p-val < .0001
## 
## Number of estimates:   107
## Number of clusters:    51
## Estimates per cluster: 1-7 (mean: 2.10, median: 2)
## 
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 25.3) = 24.3791, p-val < .0001
## 
## Model Results:
## 
##                        estimate      se¹     tval¹     df¹    pval¹    ci.lb¹ 
## intrcpt                 -0.0031  0.0164   -0.1870   44.66   0.8525   -0.0362  
## factor(Emotion_Cat)pa    0.0707  0.0143    4.9375    25.3   <.0001    0.0412  
##                         ci.ub¹      
## intrcpt                0.0300       
## factor(Emotion_Cat)pa  0.1001   *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 1) results based on cluster-robust inference (var-cov estimator: CR2,
##    approx t/F-tests and confidence intervals, df: Satterthwaite approx)

## 
## Multivariate Meta-Analysis Model (k = 79; method: REML)
## 
## Variance Components:
## 
## outer factor: ID                    (nlvls = 38)
## inner factor: factor(Study_Quality) (nlvls = 2)
## 
##             estim    sqrt  fixed 
## tau^2      0.0093  0.0963     no 
## rho        0.5000             no 
## 
## Test for Residual Heterogeneity:
## QE(df = 77) = 245.8930, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.0165, p-val = 0.8979
## 
## Model Results:
## 
##                            estimate      se    zval    pval    ci.lb   ci.ub    
## intrcpt                      0.0292  0.0403  0.7229  0.4697  -0.0499  0.1082    
## factor(Study_Quality)good    0.0058  0.0454  0.1283  0.8979  -0.0832  0.0948    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 
## Multivariate Meta-Analysis Model (k = 92; method: REML)
## 
## Variance Components:
## 
## outer factor: ID                  (nlvls = 46)
## inner factor: factor(Emotion_Cat) (nlvls = 2)
## 
##             estim    sqrt  fixed 
## tau^2      0.0070  0.0836     no 
## rho        0.4541             no 
## 
## Test for Residual Heterogeneity:
## QE(df = 90) = 202.3818, p-val < .0001
## 
## Number of estimates:   92
## Number of clusters:    46
## Estimates per cluster: 1-4 (mean: 2.00, median: 2)
## 
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 34.78) = 0.2959, p-val = 0.5900
## 
## Model Results:
## 
##                        estimate      se¹    tval¹     df¹    pval¹    ci.lb¹ 
## intrcpt                  0.0450  0.0167   2.6886   37.61   0.0106    0.0111  
## factor(Emotion_Cat)pa    0.0115  0.0212   0.5439   34.78   0.5900   -0.0315  
##                         ci.ub¹    
## intrcpt                0.0788   * 
## factor(Emotion_Cat)pa  0.0546     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 1) results based on cluster-robust inference (var-cov estimator: CR2,
##    approx t/F-tests and confidence intervals, df: Satterthwaite approx)

## 
## Multivariate Meta-Analysis Model (k = 68; method: REML)
## 
## Variance Components:
## 
## outer factor: ID                    (nlvls = 35)
## inner factor: factor(Study_Quality) (nlvls = 2)
## 
##             estim    sqrt  fixed 
## tau^2      0.0047  0.0684     no 
## rho        0.5000             no 
## 
## Test for Residual Heterogeneity:
## QE(df = 66) = 170.1374, p-val < .0001
## 
## Number of estimates:   68
## Number of clusters:    35
## Estimates per cluster: 1-4 (mean: 1.94, median: 2)
## 
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 7.18) = 0.0090, p-val = 0.9271
## 
## Model Results:
## 
##                            estimate      se¹    tval¹    df¹    pval¹    ci.lb¹ 
## intrcpt                      0.0588  0.0445   1.3208   5.22   0.2415   -0.0542  
## factor(Study_Quality)good    0.0045  0.0474   0.0948   7.18   0.9271   -0.1070  
##                             ci.ub¹    
## intrcpt                    0.1718     
## factor(Study_Quality)good  0.1159     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 1) results based on cluster-robust inference (var-cov estimator: CR2,
##    approx t/F-tests and confidence intervals, df: Satterthwaite approx)

## 
## Multivariate Meta-Analysis Model (k = 92; method: REML)
## 
## Variance Components:
## 
## outer factor: ID                  (nlvls = 46)
## inner factor: factor(Emotion_Cat) (nlvls = 2)
## 
##             estim    sqrt  fixed 
## tau^2      0.0067  0.0817     no 
## rho        0.9587             no 
## 
## Test for Residual Heterogeneity:
## QE(df = 90) = 181.2950, p-val < .0001
## 
## Number of estimates:   92
## Number of clusters:    46
## Estimates per cluster: 1-4 (mean: 2.00, median: 2)
## 
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 16.75) = 17.2601, p-val = 0.0007
## 
## Model Results:
## 
##                        estimate      se¹    tval¹     df¹    pval¹    ci.lb¹ 
## intrcpt                  0.0137  0.0150   0.9119   37.35   0.3676   -0.0167  
## factor(Emotion_Cat)pa    0.0598  0.0144   4.1545   16.75   0.0007    0.0294  
##                         ci.ub¹      
## intrcpt                0.0441       
## factor(Emotion_Cat)pa  0.0903   *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 1) results based on cluster-robust inference (var-cov estimator: CR2,
##    approx t/F-tests and confidence intervals, df: Satterthwaite approx)

## 
## Multivariate Meta-Analysis Model (k = 68; method: REML)
## 
## Variance Components:
## 
## outer factor: ID                    (nlvls = 35)
## inner factor: factor(Study_Quality) (nlvls = 2)
## 
##             estim    sqrt  fixed 
## tau^2      0.0062  0.0786     no 
## rho        0.5000             no 
## 
## Test for Residual Heterogeneity:
## QE(df = 66) = 167.7987, p-val < .0001
## 
## Number of estimates:   68
## Number of clusters:    35
## Estimates per cluster: 1-4 (mean: 1.94, median: 2)
## 
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 7.49) = 0.0038, p-val = 0.9525
## 
## Model Results:
## 
##                            estimate      se¹     tval¹    df¹    pval¹ 
## intrcpt                      0.0666  0.0552    1.2058   5.34   0.2786  
## factor(Study_Quality)good   -0.0036  0.0578   -0.0616   7.49   0.9525  
##                              ci.lb¹   ci.ub¹    
## intrcpt                    -0.0726   0.2057     
## factor(Study_Quality)good  -0.1385   0.1314     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 1) results based on cluster-robust inference (var-cov estimator: CR2,
##    approx t/F-tests and confidence intervals, df: Satterthwaite approx)

Summary

Here are the full results for all emotions, positive, and negative emotions using within-person SD and RVI

results_df %>% 
  knitr::kable() %>% 
  kable_styling(bootstrap_options = c("striped")) %>%
  column_spec(c(5, 9, 14, 18), width_min = "1.25in") %>%
  scroll_box(width = "900px")
trait emo cor_SD p_SD CI_SD k_SD Q_SD Qp_SD PI_SD I2_SD tau2_SD cor_RVI p_RVI CI_RVI k_RVI Q_RVI Qp_RVI PI_RVI I2_RVI tau2_RVI cor_BCLSM p_BCLSM CI_BCLSM k_BCLSM Q_BCLSM Qp_BCLSM PI_BCLSM I2_BCLSM tau2_BCLSM
A all -0.06 0.00028 [-0.08 - -0.03] 118 360.97 0 [-0.24 - 0.13] 71.26 0.01 0.02 0.12407 [-0.01 - 0.06] 103 264.74 0 [-0.16 - 0.21] 69.81 0.01 -0.02 0.21665 [-0.05 - 0.01] 103 271.44 0 [-0.21 - 0.17] 68.88 0.01
A pa -0.01 0.7135 [-0.04 - 0.03] 55 126.82 0 [-0.19 - 0.18] 64.2 0.01 0.01 0.60933 [-0.03 - 0.05] 48 126.12 0 [-0.2 - 0.22] 71.74 0.01 0 0.94373 [-0.04 - 0.04] 48 117.87 0 [-0.2 - 0.19] 68.34 0.01
A na -0.1 0 [-0.13 - -0.07] 57 142.86 0 [-0.26 - 0.07] 64.77 0.01 0.05 0.00373 [0.02 - 0.08] 49 106.51 0 [-0.11 - 0.21] 64.52 0.01 -0.03 0.1036 [-0.06 - 0.01] 49 130.38 0 [-0.21 - 0.15] 68.36 0.01
C all -0.07 0 [-0.09 - -0.05] 134 267.41 0 [-0.17 - 0.03] 51.19 0 0.02 0.21709 [-0.01 - 0.05] 111 324.93 0 [-0.16 - 0.2] 73.43 0.01 -0.03 0.04071 [-0.06 - 0] 109 243.67 0 [-0.21 - 0.15] 64.71 0.01
C pa -0.02 0.12861 [-0.04 - 0.01] 63 96.22 0.00349 [-0.11 - 0.08] 29.37 0 0 0.98598 [-0.04 - 0.03] 53 119.01 0 [-0.19 - 0.19] 65.68 0.01 -0.01 0.48149 [-0.04 - 0.02] 51 109.01 0 [-0.18 - 0.16] 62.92 0.01
C na -0.12 0 [-0.14 - -0.1] 65 85.63 0.03688 [-0.2 - -0.03] 28.47 0 0.05 0.0109 [0.01 - 0.09] 52 155.82 0 [-0.17 - 0.27] 75.48 0.01 -0.04 0.01286 [-0.07 - -0.01] 52 109.57 0 [-0.2 - 0.12] 61.98 0.01
E all 0.01 0.31601 [-0.01 - 0.04] 137 440.6 0 [-0.15 - 0.17] 69.02 0.01 0.06 0 [0.04 - 0.09] 120 198.72 0.00001 [-0.06 - 0.19] 43.6 0 0.04 0.00455 [0.01 - 0.06] 120 257.9 0 [-0.12 - 0.19] 55.19 0.01
E pa 0.07 0.00005 [0.04 - 0.1] 67 156.16 0 [-0.1 - 0.24] 61.45 0.01 0.05 0.00072 [0.02 - 0.08] 59 102.82 0.00026 [-0.08 - 0.18] 45.12 0 0.07 0.00002 [0.04 - 0.1] 59 108.91 0.00006 [-0.07 - 0.2] 47.67 0
E na -0.05 0.0005 [-0.07 - -0.02] 63 117.38 0.00003 [-0.18 - 0.08] 53.25 0 0.07 0 [0.05 - 0.1] 54 87.33 0.00208 [-0.04 - 0.19] 43.84 0 0 0.9991 [-0.03 - 0.03] 54 94.15 0.00043 [-0.13 - 0.13] 50.09 0
N all 0.21 0 [0.19 - 0.23] 156 921.74 0 [0.07 - 0.35] 81.63 0.02 0 0.95411 [-0.02 - 0.03] 139 545.07 0 [-0.17 - 0.17] 75.03 0.01 0.12 0 [0.1 - 0.15] 138 430.96 0 [-0.05 - 0.29] 70.48 0.01
N pa 0.08 0 [0.06 - 0.1] 72 126.79 0.00005 [-0.04 - 0.2] 47.4 0 0.06 0.00004 [0.03 - 0.09] 64 118.38 0.00003 [-0.08 - 0.2] 51.22 0 0.07 0 [0.04 - 0.1] 64 118.05 0.00003 [-0.06 - 0.21] 50.61 0
N na 0.3 0 [0.28 - 0.32] 78 183.76 0 [0.16 - 0.44] 62 0.01 -0.06 0.00074 [-0.09 - -0.03] 69 256.13 0 [-0.27 - 0.16] 75.66 0.01 0.16 0 [0.13 - 0.19] 68 204.55 0 [-0.05 - 0.36] 74.15 0.01
O all 0.03 0.04588 [0 - 0.06] 113 316.95 0 [-0.16 - 0.22] 67.63 0.01 0.05 0.00049 [0.02 - 0.08] 98 216.75 0 [-0.1 - 0.2] 60.61 0.01 0.04 0.00519 [0.01 - 0.07] 98 221.82 0 [-0.12 - 0.21] 58.65 0.01
O pa 0.06 0.00184 [0.02 - 0.1] 53 146.81 0 [-0.14 - 0.27] 70.29 0.01 0.06 0.00213 [0.02 - 0.09] 46 106.16 0 [-0.12 - 0.23] 62.39 0.01 0.07 0.00053 [0.03 - 0.1] 46 107.77 0 [-0.11 - 0.24] 62.67 0.01
O na 0.01 0.55243 [-0.02 - 0.04] 54 112.48 0 [-0.15 - 0.17] 60.18 0.01 0.05 0.00717 [0.01 - 0.08] 46 96.22 0.00001 [-0.11 - 0.2] 60.28 0.01 0.02 0.07638 [0 - 0.05] 46 73.52 0.00462 [-0.09 - 0.14] 42.86 0
rio::export(results_df, "final_results.RDS")

IV. Robustness and Supplementary Materials

1. Compare SD and RVI

To more accurately directly compare approaches using SD and RVI, we are refitting all models for within-person SD using the subset of the data for which raw data were available to calculate RVI.

# duplicate results_df structure
robust_df <- data.frame(
  trait = rep(c("A", "C", "E", "N", "O")),
  cor_SD = NA,
  p_SD = NA,
  CI_SD = NA,
  k_SD = NA,
  Q_SD = NA,
  Qp_SD = NA
)

for(trait in c("N", "E", "A", "C", "O")){
  meta_obj <- robust(rma.mv(yi = Cor_SD,
                            V = vi_SD,
                            data = dat[dat$Personality == trait & 
                                       !is.na(dat$Cor_RVI), ],
                            method = "REML",
                            level = 95, 
                            digits = 4,
                            slab = ID,
                            random = ~1 | ID),
                     clubSandwich = T,
                     cluster = ID)
  robust_df[robust_df$trait == trait, c("cor_SD", "p_SD", "CI_SD", "k_SD",
                                        "Q_SD", "Qp_SD")] <- c(
             round(meta_obj$b, 2), round(meta_obj$pval, 5), 
             paste0("[", round(meta_obj$ci.lb, 2), 
                    " - ", round(meta_obj$ci.ub, 2), "]"), 
             meta_obj$k,
             round(meta_obj$QE, 2), round(meta_obj$QEp, 5))
}

robust_df %>% knitr::kable() %>% kable_styling(bootstrap_options = c("striped"))
trait cor_SD p_SD CI_SD k_SD Q_SD Qp_SD
A -0.06 0.00065 [-0.09 - -0.03] 103 315.52 0
C -0.07 0 [-0.09 - -0.05] 111 230.87 0
E 0.01 0.41467 [-0.02 - 0.04] 120 382.75 0
N 0.2 0 [0.18 - 0.23] 139 775.56 0
O 0.02 0.1753 [-0.01 - 0.05] 98 273.63 0

2. Publication Bias

2a. With Emotion SD

for(trait in c("N", "E", "A", "C", "O")) {
  
  # get model object
  mod_obj <- get(paste0(trait, "_sd"))
  
  # funnel plot
  funnel(mod_obj,    
       xlim=c(-1,1), 
       xlab= paste("Correlations:", trait, "- emotion SD"),
       steps = 4, 
       digits = c(1, 2),
       back = "white")
  
  # test for funnel plot asymmetry
  print(ranktest(mod_obj))
}

## 
## Rank Correlation Test for Funnel Plot Asymmetry
## 
## Kendall's tau = -0.1639, p = 0.0023
## Warning in cor.test.default(yi.star, vi, method = "kendall", exact = exact):
## Cannot compute exact p-value with ties

## 
## Rank Correlation Test for Funnel Plot Asymmetry
## 
## Kendall's tau = 0.0944, p = 0.1019
## Warning in cor.test.default(yi.star, vi, method = "kendall", exact = exact):
## Cannot compute exact p-value with ties

## 
## Rank Correlation Test for Funnel Plot Asymmetry
## 
## Kendall's tau = -0.0380, p = 0.5423
## Warning in cor.test.default(yi.star, vi, method = "kendall", exact = exact):
## Cannot compute exact p-value with ties

## 
## Rank Correlation Test for Funnel Plot Asymmetry
## 
## Kendall's tau = 0.0588, p = 0.3135
## Warning in cor.test.default(yi.star, vi, method = "kendall", exact = exact):
## Cannot compute exact p-value with ties

## 
## Rank Correlation Test for Funnel Plot Asymmetry
## 
## Kendall's tau = -0.0754, p = 0.2366

2b. With Emotion RVI

for(trait in c("N", "E", "A", "C", "O")) {
  
  # get model object
  mod_obj <- get(paste0(trait, "_rvi"))
  
  # funnel plot
  funnel(mod_obj,    
       xlim=c(-1,1), 
       xlab= paste("Correlations:", trait, "- emotion RVI"),
       steps = 4, 
       digits = c(1, 2),
       back = "white")
  
  # test for funnel plot asymmetry
  print(ranktest(mod_obj))
}

## 
## Rank Correlation Test for Funnel Plot Asymmetry
## 
## Kendall's tau = -0.0495, p = 0.3888

## 
## Rank Correlation Test for Funnel Plot Asymmetry
## 
## Kendall's tau = 0.0754, p = 0.2237

## 
## Rank Correlation Test for Funnel Plot Asymmetry
## 
## Kendall's tau = -0.0695, p = 0.3004

## 
## Rank Correlation Test for Funnel Plot Asymmetry
## 
## Kendall's tau = 0.0143, p = 0.8269

## 
## Rank Correlation Test for Funnel Plot Asymmetry
## 
## Kendall's tau = -0.0848, p = 0.2179

2c. With Emotion BCLSM

for(trait in c("N", "E", "A", "C", "O")) {
  
  # get model object
  mod_obj <- get(paste0(trait, "_bclsm"))
  
  # funnel plot
  funnel(mod_obj,    
       xlim=c(-1,1), 
       xlab= paste("Correlations:", trait, "- emotion BCLSM"),
       steps = 4, 
       digits = c(1, 2),
       back = "white")
  
  # test for funnel plot asymmetry
  print(ranktest(mod_obj))
}
## Warning in cor.test.default(yi.star, vi, method = "kendall", exact = exact):
## Cannot compute exact p-value with ties

## 
## Rank Correlation Test for Funnel Plot Asymmetry
## 
## Kendall's tau = -0.1560, p = 0.0067
## Warning in cor.test.default(yi.star, vi, method = "kendall", exact = exact):
## Cannot compute exact p-value with ties

## 
## Rank Correlation Test for Funnel Plot Asymmetry
## 
## Kendall's tau = 0.1073, p = 0.0823
## Warning in cor.test.default(yi.star, vi, method = "kendall", exact = exact):
## Cannot compute exact p-value with ties

## 
## Rank Correlation Test for Funnel Plot Asymmetry
## 
## Kendall's tau = -0.0543, p = 0.4167
## Warning in cor.test.default(yi.star, vi, method = "kendall", exact = exact):
## Cannot compute exact p-value with ties

## 
## Rank Correlation Test for Funnel Plot Asymmetry
## 
## Kendall's tau = 0.0602, p = 0.3539
## Warning in cor.test.default(yi.star, vi, method = "kendall", exact = exact):
## Cannot compute exact p-value with ties

## 
## Rank Correlation Test for Funnel Plot Asymmetry
## 
## Kendall's tau = -0.0794, p = 0.2472

3. Robust Variance Estimation with {robumeta}

# duplicate results_df structure
robumeta_df <- data.frame(
  trait = rep(c("A", "C", "E", "N", "O"), each = 3),
  emo = c("all", "pa", "na"),
  cor_SD = NA,
  p_SD = NA,
  CI_SD = NA,
  k_SD = NA,
  cor_RVI = NA,
  p_RVI = NA,
  CI_RVI = NA,
  k_RVI = NA,
  cor_BCLSM = NA,
  p_BCLSM = NA,
  CI_BCLSM = NA,
  k_BCLSM = NA
)
for(trait in c("N", "E", "A", "C", "O")) {
  robumeta_df <- fit_robumeta(trait = trait, .data = dat,
                              output = robumeta_df)
}

robumeta_df %>% 
  knitr::kable() %>% 
  kable_styling(bootstrap_options = c("striped"))
trait emo cor_SD p_SD CI_SD k_SD cor_RVI p_RVI CI_RVI k_RVI cor_BCLSM p_BCLSM CI_BCLSM k_BCLSM
A all -0.05 0.00014 [-0.08 - -0.03] 58 0.02 0.13531 [-0.01 - 0.05] 53 -0.02 0.19379 [-0.05 - 0.01] 53
A pa 0 0.87177 [-0.04 - 0.03] 51 0.01 0.61568 [-0.03 - 0.05] 46 0 0.97278 [-0.04 - 0.04] 46
A na -0.1 0 [-0.13 - -0.07] 50 0.05 0.00302 [0.02 - 0.08] 45 -0.03 0.12066 [-0.06 - 0.01] 45
C all -0.07 0 [-0.09 - -0.05] 63 0.02 0.27244 [-0.01 - 0.04] 58 -0.03 0.01655 [-0.06 - -0.01] 57
C pa -0.01 0.20345 [-0.04 - 0.01] 55 0 0.92785 [-0.04 - 0.03] 50 -0.01 0.51245 [-0.04 - 0.02] 49
C na -0.12 0 [-0.14 - -0.09] 55 0.05 0.00889 [0.01 - 0.09] 49 -0.04 0.01029 [-0.07 - -0.01] 49
E all 0.01 0.30154 [-0.01 - 0.04] 72 0.07 0 [0.04 - 0.09] 66 0.04 0.00474 [0.01 - 0.06] 66
E pa 0.07 0.00003 [0.04 - 0.1] 63 0.05 0.00033 [0.03 - 0.08] 57 0.07 0.00001 [0.04 - 0.1] 57
E na -0.05 0.00078 [-0.07 - -0.02] 57 0.07 0 [0.05 - 0.1] 51 0 0.97006 [-0.03 - 0.03] 51
N all 0.19 0 [0.18 - 0.21] 79 0 0.71545 [-0.02 - 0.03] 73 0.12 0 [0.1 - 0.15] 72
N pa 0.08 0 [0.06 - 0.1] 68 0.06 0.00002 [0.04 - 0.09] 62 0.07 0 [0.04 - 0.1] 62
N na 0.3 0 [0.28 - 0.32] 71 -0.06 0.00081 [-0.09 - -0.03] 65 0.16 0 [0.13 - 0.19] 64
O all 0.03 0.01999 [0.01 - 0.06] 56 0.05 0.00033 [0.02 - 0.08] 51 0.04 0.00276 [0.02 - 0.07] 51
O pa 0.06 0.00101 [0.03 - 0.1] 49 0.06 0.00221 [0.02 - 0.1] 44 0.07 0.00044 [0.03 - 0.1] 44
O na 0.01 0.4969 [-0.02 - 0.04] 48 0.05 0.00729 [0.01 - 0.08] 43 0.02 0.09496 [0 - 0.05] 43

4. Personality and Mean Affects

Although this meta-analysis did not focus on the relationship between personality traits and mean level of affect, this association can be examined using the raw data that we obtained and are presented here for further context in understanding our patterns of results.

# initialize table for all results
mean_df <- data.frame(
  trait = rep(c("A", "C", "E", "N", "O"), each = 3),
  emo = c("all", "pa", "na"),
  cor_Mean = NA,
  p_Mean = NA,
  CI_Mean = NA,
  k_Mean = NA,
  Q_Mean = NA,
  Qp_Mean = NA,
  PI_Mean = NA,
  I2_Mean = NA,
  tau2_Mean = NA
)

Here are the full results for all emotions, positive, and negative emotions using within-person Means

mean_df %>% 
  knitr::kable() %>% 
  kable_styling(bootstrap_options = c("striped")) %>%
  column_spec(c(5, 9), width_min = "1.25in") %>%
  scroll_box(width = "900px")
trait emo cor_Mean p_Mean CI_Mean k_Mean Q_Mean Qp_Mean PI_Mean I2_Mean tau2_Mean
A all 0.01 0.60184 [-0.02 - 0.03] 103 1586.27 0 [-0.1 - 0.11] 93.55 0.05
A pa 0.2 0 [0.15 - 0.24] 48 231.76 0 [-0.05 - 0.44] 83.1 0.02
A na -0.19 0 [-0.23 - -0.14] 49 226.57 0 [-0.41 - 0.04] 84.79 0.02
C all 0.01 0.23951 [-0.01 - 0.04] 109 2078.06 0 [-0.11 - 0.14] 94.42 0.06
C pa 0.2 0 [0.16 - 0.25] 51 298.95 0 [-0.06 - 0.47] 89.09 0.03
C na -0.18 0 [-0.22 - -0.14] 52 338.82 0 [-0.44 - 0.08] 89.01 0.03
E all 0.13 0 [0.09 - 0.17] 120 2397.52 0 [-0.17 - 0.43] 93.52 0.05
E pa 0.28 0 [0.23 - 0.33] 59 446.25 0 [-0.02 - 0.58] 87.46 0.03
E na -0.11 0 [-0.15 - -0.08] 54 154.86 0 [-0.31 - 0.09] 73.82 0.01
N all 0.06 0.00574 [0.02 - 0.1] 138 6898.32 0 [-0.28 - 0.4] 97.77 0.13
N pa -0.3 0 [-0.33 - -0.26] 64 299.68 0 [-0.54 - -0.06] 85.34 0.02
N na 0.38 0 [0.35 - 0.42] 68 724.31 0 [0.15 - 0.62] 92.16 0.03
O all 0.06 0.00387 [0.02 - 0.09] 98 927.34 0 [-0.17 - 0.28] 88.9 0.03
O pa 0.15 0 [0.09 - 0.2] 46 399.55 0 [-0.18 - 0.48] 89.18 0.03
O na -0.04 0.04149 [-0.08 - 0] 46 151.91 0 [-0.25 - 0.17] 78.89 0.01

5. Meta-Traits SEM Model

load("../Data/metaSEM.RData")

5a. Positive Affect

#### SD ####
pa_sd_fixed <- tssem1(pa_sd_data, pa_sd_n, method="FEM")

sd_model <- "## Factor loadings
             Stability =~ A + C + N
             Plasticity =~ E + O
             ## Factor predictions
             EmoSD ~ Stability
             EmoSD ~ Plasticity
             ## Factor correlation
             Stability ~~ Plasticity"

sd_RAM <- lavaan2RAM(sd_model, obs.variables=c("A","C","E","N","O","EmoSD"),
                     A.notation="on", S.notation="with")
pa_sd_fixed2 <- tssem2(pa_sd_fixed, RAM=sd_RAM, intervals="z")
summary(pa_sd_fixed2)
## 
## Call:
## wls(Cov = coef.tssem1FEM(tssem1.obj), aCov = vcov.tssem1FEM(tssem1.obj), 
##     n = sum(tssem1.obj$n), RAM = RAM, Amatrix = Amatrix, Smatrix = Smatrix, 
##     Fmatrix = Fmatrix, diag.constraints = diag.constraints, cor.analysis = tssem1.obj$cor.analysis, 
##     intervals.type = intervals.type, mx.algebras = mx.algebras, 
##     mxModel.Args = mxModel.Args, subset.variables = subset.variables, 
##     model.name = model.name, suppressWarnings = suppressWarnings, 
##     silent = silent, run = run)
## 
## 95% confidence intervals: z statistic approximation
## Coefficients:
##                          Estimate Std.Error    lbound    ubound  z value
## AonStability             0.473171  0.011321  0.450981  0.495360  41.7946
## ConStability             0.431907  0.011229  0.409898  0.453915  38.4633
## EonPlasticity            0.769474  0.020475  0.729344  0.809604  37.5814
## EmoSDonPlasticity        0.263130  0.023993  0.216104  0.310156  10.9668
## EmoSDonStability        -0.221771  0.023282 -0.267402 -0.176140  -9.5256
## NonStability            -0.636689  0.011688 -0.659597 -0.613780 -54.4733
## OonPlasticity            0.356359  0.012635  0.331596  0.381122  28.2052
## StabilitywithPlasticity  0.621138  0.019179  0.583547  0.658729  32.3857
##                                      Pr(>|z|)    
## AonStability            < 0.00000000000000022 ***
## ConStability            < 0.00000000000000022 ***
## EonPlasticity           < 0.00000000000000022 ***
## EmoSDonPlasticity       < 0.00000000000000022 ***
## EmoSDonStability        < 0.00000000000000022 ***
## NonStability            < 0.00000000000000022 ***
## OonPlasticity           < 0.00000000000000022 ***
## StabilitywithPlasticity < 0.00000000000000022 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Goodness-of-fit indices:
##                                                 Value
## Sample size                                11353.0000
## Chi-square of target model                   136.8936
## DF of target model                             7.0000
## p value of target model                        0.0000
## Number of constraints imposed on "Smatrix"     0.0000
## DF manually adjusted                           0.0000
## Chi-square of independence model            3936.1566
## DF of independence model                      15.0000
## RMSEA                                          0.0404
## RMSEA lower 95% CI                             0.0347
## RMSEA upper 95% CI                             0.0465
## SRMR                                           0.0238
## TLI                                            0.9290
## CFI                                            0.9669
## AIC                                          122.8936
## BIC                                           71.5330
## OpenMx status1: 0 ("0" or "1": The optimization is considered fine.
## Other values indicate problems.)
plot(pa_sd_fixed2, color="#E69F00", what = "std")

#### RVI ####
pa_rvi_fixed <- tssem1(pa_rvi_data, pa_rvi_n, method="FEM")

rvi_model <- "## Factor loadings
              Stability =~ A + C + N
              Plasticity =~ E + O
              ## Factor predictions
              EmoRVI ~ Stability
              EmoRVI ~ Plasticity
              ## Factor correlation
              Stability ~~ Plasticity"

rvi_RAM <- lavaan2RAM(rvi_model, obs.variables=c("A","C","E","N","O","EmoRVI"),
                      A.notation="on", S.notation="with")
pa_rvi_fixed2 <- tssem2(pa_rvi_fixed, RAM=rvi_RAM, intervals="z")
summary(pa_rvi_fixed2)
## 
## Call:
## wls(Cov = coef.tssem1FEM(tssem1.obj), aCov = vcov.tssem1FEM(tssem1.obj), 
##     n = sum(tssem1.obj$n), RAM = RAM, Amatrix = Amatrix, Smatrix = Smatrix, 
##     Fmatrix = Fmatrix, diag.constraints = diag.constraints, cor.analysis = tssem1.obj$cor.analysis, 
##     intervals.type = intervals.type, mx.algebras = mx.algebras, 
##     mxModel.Args = mxModel.Args, subset.variables = subset.variables, 
##     model.name = model.name, suppressWarnings = suppressWarnings, 
##     silent = silent, run = run)
## 
## 95% confidence intervals: z statistic approximation
## Coefficients:
##                          Estimate Std.Error    lbound    ubound  z value
## AonStability             0.473235  0.011332  0.451024  0.495446  41.7605
## ConStability             0.431988  0.011240  0.409957  0.454019  38.4319
## EonPlasticity            0.777162  0.021523  0.734978  0.819346  36.1084
## EmoRVIonPlasticity       0.194151  0.022072  0.150890  0.237412   8.7961
## EmoRVIonStability       -0.191677  0.021685 -0.234179 -0.149175  -8.8392
## NonStability            -0.635725  0.011694 -0.658645 -0.612805 -54.3635
## OonPlasticity            0.352891  0.012912  0.327584  0.378198  27.3306
## StabilitywithPlasticity  0.616449  0.019575  0.578082  0.654816  31.4909
##                                      Pr(>|z|)    
## AonStability            < 0.00000000000000022 ***
## ConStability            < 0.00000000000000022 ***
## EonPlasticity           < 0.00000000000000022 ***
## EmoRVIonPlasticity      < 0.00000000000000022 ***
## EmoRVIonStability       < 0.00000000000000022 ***
## NonStability            < 0.00000000000000022 ***
## OonPlasticity           < 0.00000000000000022 ***
## StabilitywithPlasticity < 0.00000000000000022 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Goodness-of-fit indices:
##                                                 Value
## Sample size                                11353.0000
## Chi-square of target model                   136.1270
## DF of target model                             7.0000
## p value of target model                        0.0000
## Number of constraints imposed on "Smatrix"     0.0000
## DF manually adjusted                           0.0000
## Chi-square of independence model            3831.0264
## DF of independence model                      15.0000
## RMSEA                                          0.0403
## RMSEA lower 95% CI                             0.0346
## RMSEA upper 95% CI                             0.0464
## SRMR                                           0.0239
## TLI                                            0.9275
## CFI                                            0.9662
## AIC                                          122.1270
## BIC                                           70.7663
## OpenMx status1: 0 ("0" or "1": The optimization is considered fine.
## Other values indicate problems.)
plot(pa_rvi_fixed2, color="#E69F00", what = "std")

#### BCLSM ####
pa_bclsm_fixed <- tssem1(pa_bclsm_data, pa_bclsm_n, method="FEM")

bclsm_model <- "## Factor loadings
                Stability =~ A + C + N
                Plasticity =~ E + O
                ## Factor predictions
                EmoBCLSM ~ Stability
                EmoBCLSM ~ Plasticity
                ## Factor correlation
                Stability ~~ Plasticity"

bclsm_RAM <- lavaan2RAM(bclsm_model, obs.variables=c("A","C","E","N","O","EmoBCLSM"),
                        A.notation="on", S.notation="with")
pa_bclsm_fixed2 <- tssem2(pa_bclsm_fixed, RAM=bclsm_RAM, intervals="z")
summary(pa_bclsm_fixed2)
## 
## Call:
## wls(Cov = coef.tssem1FEM(tssem1.obj), aCov = vcov.tssem1FEM(tssem1.obj), 
##     n = sum(tssem1.obj$n), RAM = RAM, Amatrix = Amatrix, Smatrix = Smatrix, 
##     Fmatrix = Fmatrix, diag.constraints = diag.constraints, cor.analysis = tssem1.obj$cor.analysis, 
##     intervals.type = intervals.type, mx.algebras = mx.algebras, 
##     mxModel.Args = mxModel.Args, subset.variables = subset.variables, 
##     model.name = model.name, suppressWarnings = suppressWarnings, 
##     silent = silent, run = run)
## 
## 95% confidence intervals: z statistic approximation
## Coefficients:
##                          Estimate Std.Error    lbound    ubound  z value
## AonStability             0.473685  0.011307  0.451523  0.495847  41.8916
## ConStability             0.432258  0.011220  0.410267  0.454249  38.5252
## EonPlasticity            0.765933  0.020329  0.726089  0.805777  37.6768
## EmoBCLSMonPlasticity     0.262166  0.024226  0.214684  0.309647  10.8218
## EmoBCLSMonStability     -0.231069  0.023420 -0.276971 -0.185167  -9.8664
## NonStability            -0.635099  0.011657 -0.657946 -0.612253 -54.4835
## OonPlasticity            0.358656  0.012671  0.333820  0.383491  28.3043
## StabilitywithPlasticity  0.623754  0.019146  0.586229  0.661279  32.5793
##                                      Pr(>|z|)    
## AonStability            < 0.00000000000000022 ***
## ConStability            < 0.00000000000000022 ***
## EonPlasticity           < 0.00000000000000022 ***
## EmoBCLSMonPlasticity    < 0.00000000000000022 ***
## EmoBCLSMonStability     < 0.00000000000000022 ***
## NonStability            < 0.00000000000000022 ***
## OonPlasticity           < 0.00000000000000022 ***
## StabilitywithPlasticity < 0.00000000000000022 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Goodness-of-fit indices:
##                                                 Value
## Sample size                                11353.0000
## Chi-square of target model                   138.5594
## DF of target model                             7.0000
## p value of target model                        0.0000
## Number of constraints imposed on "Smatrix"     0.0000
## DF manually adjusted                           0.0000
## Chi-square of independence model            3921.4603
## DF of independence model                      15.0000
## RMSEA                                          0.0407
## RMSEA lower 95% CI                             0.0349
## RMSEA upper 95% CI                             0.0467
## SRMR                                           0.0241
## TLI                                            0.9278
## CFI                                            0.9663
## AIC                                          124.5594
## BIC                                           73.1987
## OpenMx status1: 0 ("0" or "1": The optimization is considered fine.
## Other values indicate problems.)
plot(pa_bclsm_fixed2, color="#E69F00", what = "std")

5b. Negative Affect

#### SD ####
na_sd_fixed <- tssem1(na_sd_data, na_sd_n, method="FEM")

na_sd_fixed2 <- tssem2(na_sd_fixed, RAM=sd_RAM, intervals="z")
summary(na_sd_fixed2)
## 
## Call:
## wls(Cov = coef.tssem1FEM(tssem1.obj), aCov = vcov.tssem1FEM(tssem1.obj), 
##     n = sum(tssem1.obj$n), RAM = RAM, Amatrix = Amatrix, Smatrix = Smatrix, 
##     Fmatrix = Fmatrix, diag.constraints = diag.constraints, cor.analysis = tssem1.obj$cor.analysis, 
##     intervals.type = intervals.type, mx.algebras = mx.algebras, 
##     mxModel.Args = mxModel.Args, subset.variables = subset.variables, 
##     model.name = model.name, suppressWarnings = suppressWarnings, 
##     silent = silent, run = run)
## 
## 95% confidence intervals: z statistic approximation
## Coefficients:
##                          Estimate Std.Error    lbound    ubound z value
## AonStability            -0.430858  0.010118 -0.450690 -0.411026 -42.581
## ConStability            -0.406421  0.010124 -0.426264 -0.386578 -40.143
## EonPlasticity            0.790943  0.021938  0.747946  0.833941  36.053
## EmoSDonPlasticity        0.214120  0.021334  0.172307  0.255934  10.037
## EmoSDonStability         0.499876  0.020134  0.460413  0.539338  24.827
## NonStability             0.703086  0.010275  0.682948  0.723224  68.430
## OonPlasticity            0.333950  0.012184  0.310071  0.357829  27.410
## StabilitywithPlasticity -0.590124  0.018905 -0.627177 -0.553070 -31.215
##                                      Pr(>|z|)    
## AonStability            < 0.00000000000000022 ***
## ConStability            < 0.00000000000000022 ***
## EonPlasticity           < 0.00000000000000022 ***
## EmoSDonPlasticity       < 0.00000000000000022 ***
## EmoSDonStability        < 0.00000000000000022 ***
## NonStability            < 0.00000000000000022 ***
## OonPlasticity           < 0.00000000000000022 ***
## StabilitywithPlasticity < 0.00000000000000022 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Goodness-of-fit indices:
##                                                 Value
## Sample size                                12846.0000
## Chi-square of target model                   254.3705
## DF of target model                             7.0000
## p value of target model                        0.0000
## Number of constraints imposed on "Smatrix"     0.0000
## DF manually adjusted                           0.0000
## Chi-square of independence model            5392.6121
## DF of independence model                      15.0000
## RMSEA                                          0.0525
## RMSEA lower 95% CI                             0.0470
## RMSEA upper 95% CI                             0.0581
## SRMR                                           0.0324
## TLI                                            0.9014
## CFI                                            0.9540
## AIC                                          240.3705
## BIC                                          188.1450
## OpenMx status1: 0 ("0" or "1": The optimization is considered fine.
## Other values indicate problems.)
plot(na_sd_fixed2, color="#710c0c", what = "std")

#### RVI ####
na_rvi_fixed <- tssem1(na_rvi_data, na_rvi_n, method="FEM")

na_rvi_fixed2 <- tssem2(na_rvi_fixed, RAM=rvi_RAM, intervals="z")
summary(na_rvi_fixed2)
## 
## Call:
## wls(Cov = coef.tssem1FEM(tssem1.obj), aCov = vcov.tssem1FEM(tssem1.obj), 
##     n = sum(tssem1.obj$n), RAM = RAM, Amatrix = Amatrix, Smatrix = Smatrix, 
##     Fmatrix = Fmatrix, diag.constraints = diag.constraints, cor.analysis = tssem1.obj$cor.analysis, 
##     intervals.type = intervals.type, mx.algebras = mx.algebras, 
##     mxModel.Args = mxModel.Args, subset.variables = subset.variables, 
##     model.name = model.name, suppressWarnings = suppressWarnings, 
##     silent = silent, run = run)
## 
## 95% confidence intervals: z statistic approximation
## Coefficients:
##                          Estimate Std.Error    lbound    ubound  z value
## AonStability             0.468984  0.010697  0.448018  0.489949  43.8432
## ConStability             0.437138  0.010630  0.416303  0.457972  41.1224
## EonPlasticity            0.778905  0.020919  0.737904  0.819905  37.2343
## EmoRVIonPlasticity       0.060348  0.018090  0.024891  0.095804   3.3359
## EmoRVIonStability        0.068833  0.018933  0.031726  0.105941   3.6357
## NonStability            -0.626232  0.011002 -0.647795 -0.604668 -56.9190
## OonPlasticity            0.344360  0.012103  0.320640  0.368081  28.4534
## StabilitywithPlasticity  0.621126  0.019003  0.583880  0.658372  32.6849
##                                      Pr(>|z|)    
## AonStability            < 0.00000000000000022 ***
## ConStability            < 0.00000000000000022 ***
## EonPlasticity           < 0.00000000000000022 ***
## EmoRVIonPlasticity                  0.0008503 ***
## EmoRVIonStability                   0.0002773 ***
## NonStability            < 0.00000000000000022 ***
## OonPlasticity           < 0.00000000000000022 ***
## StabilitywithPlasticity < 0.00000000000000022 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Goodness-of-fit indices:
##                                                 Value
## Sample size                                12846.0000
## Chi-square of target model                   101.0201
## DF of target model                             7.0000
## p value of target model                        0.0000
## Number of constraints imposed on "Smatrix"     0.0000
## DF manually adjusted                           0.0000
## Chi-square of independence model            4047.3962
## DF of independence model                      15.0000
## RMSEA                                          0.0323
## RMSEA lower 95% CI                             0.0269
## RMSEA upper 95% CI                             0.0381
## SRMR                                           0.0171
## TLI                                            0.9500
## CFI                                            0.9767
## AIC                                           87.0201
## BIC                                           34.7946
## OpenMx status1: 0 ("0" or "1": The optimization is considered fine.
## Other values indicate problems.)
plot(na_rvi_fixed2, color="#710c0c", what = "std")

#### BCLSM ####
na_bclsm_fixed <- tssem1(na_bclsm_data, na_bclsm_n, method="FEM")

na_bclsm_fixed2 <- tssem2(na_bclsm_fixed, RAM=bclsm_RAM, intervals="z")
summary(na_bclsm_fixed2)
## 
## Call:
## wls(Cov = coef.tssem1FEM(tssem1.obj), aCov = vcov.tssem1FEM(tssem1.obj), 
##     n = sum(tssem1.obj$n), RAM = RAM, Amatrix = Amatrix, Smatrix = Smatrix, 
##     Fmatrix = Fmatrix, diag.constraints = diag.constraints, cor.analysis = tssem1.obj$cor.analysis, 
##     intervals.type = intervals.type, mx.algebras = mx.algebras, 
##     mxModel.Args = mxModel.Args, subset.variables = subset.variables, 
##     model.name = model.name, suppressWarnings = suppressWarnings, 
##     silent = silent, run = run)
## 
## 95% confidence intervals: z statistic approximation
## Coefficients:
##                          Estimate Std.Error    lbound    ubound  z value
## AonStability            -0.449572  0.010501 -0.470154 -0.428990 -42.8118
## ConStability            -0.419175  0.010472 -0.439700 -0.398650 -40.0276
## EonPlasticity            0.783714  0.021244  0.742076  0.825351  36.8907
## EmoBCLSMonPlasticity     0.189593  0.020655  0.149110  0.230076   9.1791
## EmoBCLSMonStability      0.329433  0.020125  0.289990  0.368877  16.3696
## NonStability             0.670217  0.010905  0.648843  0.691590  61.4586
## OonPlasticity            0.339828  0.012116  0.316081  0.363576  28.0470
## StabilitywithPlasticity -0.606806  0.018907 -0.643864 -0.569748 -32.0935
##                                      Pr(>|z|)    
## AonStability            < 0.00000000000000022 ***
## ConStability            < 0.00000000000000022 ***
## EonPlasticity           < 0.00000000000000022 ***
## EmoBCLSMonPlasticity    < 0.00000000000000022 ***
## EmoBCLSMonStability     < 0.00000000000000022 ***
## NonStability            < 0.00000000000000022 ***
## OonPlasticity           < 0.00000000000000022 ***
## StabilitywithPlasticity < 0.00000000000000022 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Goodness-of-fit indices:
##                                                 Value
## Sample size                                12846.0000
## Chi-square of target model                   210.2549
## DF of target model                             7.0000
## p value of target model                        0.0000
## Number of constraints imposed on "Smatrix"     0.0000
## DF manually adjusted                           0.0000
## Chi-square of independence model            4643.0578
## DF of independence model                      15.0000
## RMSEA                                          0.0475
## RMSEA lower 95% CI                             0.0421
## RMSEA upper 95% CI                             0.0532
## SRMR                                           0.0288
## TLI                                            0.9059
## CFI                                            0.9561
## AIC                                          196.2549
## BIC                                          144.0294
## OpenMx status1: 0 ("0" or "1": The optimization is considered fine.
## Other values indicate problems.)
plot(na_bclsm_fixed2, color="#710c0c", what = "std")