To run this notebook, the following directories and files need to exist:
Data folder:
final_dat.xlsx: meta-analytic datasetmetaSEM.RData: Big Five correlation matrices for
meta-analytic SEMRayyan_ProQuest.csv, Rayyan_PsyArXiv.csv,
Rayyan_published.csv, Rayyan_rerun.csv:
abstract screening decisionsScripts folder:
01_helpers.R: helper functions02_analysis.Rmd: this current RMarkdown fileDescriptive information on all unique samples:
# reads in data
dat <- rio::import("../Data/final_dat.xlsx", na = c("NA")) %>%
select(-c(Search, Authors, Title, Year,
Personality_Scale, Emotion_Scale,
Notes)) %>%
mutate(Location = if_else(grepl("US", Location), "US", Location),
ID = case_when(
!is.na(Study_Code) ~ paste0(Paper_Code, "_", Study_Code),
TRUE ~ Paper_Code)) %>%
select(ID, everything())
# removes 2 duplicated datasets
dat <- dat %>%
filter(!ID %in% c("Kuppens_2010_study1", "Koval_2013"))
# reads in abstract screening
rayyan_rerun <- rio::import("../Data/Rayyan_rerun.csv") %>% select(notes)
rayyan_pub <- rio::import("../Data/Rayyan_published.csv") %>% select(notes)
rayyan_pq <- rio::import("../Data/Rayyan_ProQuest.csv") %>% select(notes)
rayyan_arx <- rio::import("../Data/Rayyan_PsyArXiv.csv") %>% select(notes)
rayyan <- rbind(rayyan_rerun, rayyan_pub, rayyan_pq, rayyan_arx) %>% na.omit()
# clean up sample characteristics
dat <- dat %>%
mutate_at(vars(Age_Mean, Age_SD, White_Perc, Female_Perc),
~round(., 2))
# show all unique samples info
dat %>%
select(ID:Time_No) %>%
unique() %>%
kable() %>% kable_styling() %>%
scroll_box(width="800px",
height="500px")
| ID | Paper_Code | Study_Code | Study_Quality | Study_Quality_Reli | Sample_Size | Age_Mean | Age_SD | Female_Perc | White_Perc | Location | Duration | Frequency | Time_No | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | Alshamsi_2015 | Alshamsi_2015 | NA | good | fair | 52 | 36.00 | NA | 9.00 | NA | Italy | 30 days | 3 times a day | 90 |
| 21 | Armeli_2007 | Armeli_2007 | NA | good | good | 98 | 43.50 | 8.69 | 50.00 | 95.00 | NA | 21 days | 3 times a day | 63 |
| 23 | Aurora_2021 | Aurora_2021 | NA | good | good | 195 | 20.05 | 2.38 | 79.00 | 81.00 | US | 10 days | 5 times a day | 50 |
| 28 | Balducci_2020 | Balducci_2020 | NA | fair | good | 213 | 45.50 | 10.40 | 42.50 | NA | Italy | 10 days | 1 time a day | 10 |
| 30 | Bartley_2011 | Bartley_2011 | NA | good | good | 366 | 20.14 | 2.10 | 68.50 | 37.60 | US | 5 days | 1 time a day | 5 |
| 40 | Bringmann_2016_study1 | Bringmann_2016 | study1 | fair | good | 95 | 19.00 | 1.00 | 62.00 | NA | Belgium | 7 days | 10 times a day | 70 |
| 50 | Bringmann_2016_study2 | Bringmann_2016 | study2 | fair | good | 79 | 24.00 | 8.00 | 63.00 | NA | Belgium | 14 days | 10 times a day | 140 |
| 60 | Buhler_2020_wave2 | Buhler_2020 | wave2 | good | good | 2626 | 32.81 | 13.85 | NA | NA | Austria, Germany, Switzerland | 14 days | 1 time a day | 14 |
| 70 | Burns_2015 | Burns_2015 | NA | good | good | 45 | 28.09 | 10.80 | 68.00 | NA | Australia | 14 days | 1 time a day | 14 |
| 74 | Clegg_2021 | Clegg_2021 | NA | good | good | 267 | 20.26 | 0.70 | 67.00 | 60.00 | Canada | 20 days | 1 time a day | 20 |
| 84 | Conner_2012_condition1 | Conner_2012 | condition1 | good | good | 54 | 19.90 | 2.40 | 59.00 | 81.00 | New Zealand | 13 days | 1 time a day | 13 |
| 89 | Conner_2012_condition2 | Conner_2012 | condition2 | good | good | 54 | 19.90 | 2.40 | 59.00 | 81.00 | New Zealand | 13 days | 3 times a day | 39 |
| 94 | Conner_2012_condition3 | Conner_2012 | condition3 | good | good | 54 | 19.90 | 2.40 | 59.00 | 81.00 | New Zealand | 13 days | 6 times a day | 78 |
| 99 | Conner_2015 | Conner_2015 | NA | good | good | 658 | 19.80 | 1.70 | 70.21 | 79.20 | New Zealand | 13 days | 1 time a day | 13 |
| 109 | DMello_2021 | DMello_2021 | NA | good | good | 598 | 34.36 | 9.39 | 42.00 | NA | US | 56 days | 1 time a day | 56 |
| 119 | Dauvier_2019 | Dauvier_2019 | NA | fair | fair | 191 | 38.50 | 17.40 | 64.00 | NA | France | 14 days | 5 times a day | 70 |
| 123 | Denissen_2008 | Denissen_2008 | NA | good | good | 1233 | 27.67 | 9.77 | 88.60 | NA | Germany | 30 days | 1 time a day | 30 |
| 133 | Dunkley_2014_wave1 | Dunkley_2014 | wave1 | good | good | 196 | 40.94 | 12.25 | 66.33 | 78.00 | Canada | 14 days | 1 time a day | 14 |
| 148 | Eid_1999 | Eid_1999 | NA | fair | good | 180 | NA | NA | 55.00 | NA | US | 51 days | 1 time a day | 51 |
| 183 | Galla_2015 | Galla_2015 | NA | good | fair | 129 | 14.70 | 0.35 | 59.00 | 85.00 | US | 14 days | 1 time a day | 14 |
| 185 | Gartland_2014 | Gartland_2014 | NA | good | fair | 103 | 35.00 | NA | 70.87 | 90.30 | United Kingdom | 14 days | 1 time a day | 14 |
| 195 | Geukes_2017_wave1 | Geukes_2017 | wave1 | fair | fair | 131 | 21.01 | 3.65 | 81.00 | NA | Germany | 21 days | event-contingent | 112 |
| 205 | Hisler_2020_sample1 | Hisler_2020 | sample1 | good | good | 211 | 18.78 | 1.05 | 58.00 | NA | US | 30 days | 1 time a day | 30 |
| 207 | Howland_2017_wave1 | Howland_2017 | wave1 | good | good | 575 | 18.76 | 1.09 | 52.00 | 86.00 | US | 30 days | 1 time a day | 30 |
| 208 | Jimenez_2022_study2 | Jimenez_2022 | study2 | good | fair | 279 | 18.94 | 1.21 | 57.20 | 59.50 | US | 7 days | 5 times a day | 35 |
| 218 | Jones_2022 | Jones_2022 | NA | good | good | 121 | 42.10 | 12.01 | 60.00 | 89.00 | US | 7 days | 8 times a day | 56 |
| 238 | Kalokerinos_2017 | Kalokerinos_2017 | NA | fair | fair | 114 | 35.23 | 11.87 | 50.00 | NA | NA | 7 days | 1 time a day | 7 |
| 248 | Komulainen_2014 | Komulainen_2014 | NA | good | good | 104 | 23.00 | 3.69 | 82.69 | NA | Finland | 7 days | 10 times a day | 70 |
| 258 | Kritzler_2020 | Kritzler_2020 | NA | good | fair | 206 | 25.17 | 8.03 | 79.61 | NA | Germany | 7 days | 5 times a day | 35 |
| 268 | Kroencke_2020 | Kroencke_2020 | NA | good | good | 1609 | 33.70 | 12.70 | 78.00 | NA | Germany | 14 days | 6 times a day | 84 |
| 273 | Kuijpers_2022_study1 | Kuijpers_2022 | study1 | fair | good | 92 | 30.00 | 11.84 | 62.00 | NA | Belgium | 20 days | 5 times a day | 100 |
| 274 | Kuijpers_2022_study2 | Kuijpers_2022 | study2 | good | good | 80 | 32.00 | 12.50 | 57.00 | NA | Belgium | 10 days | 3 times a day | 30 |
| 275 | Kukk_2022 | Kukk_2022 | NA | good | good | 96 | 21.50 | 6.70 | 100.00 | 100.00 | Estonia | 3 days | 7 times a day | 21 |
| 285 | Kuppens_2007_study1 | Kuppens_2007 | study1 | good | good | 58 | 22.00 | NA | 68.97 | NA | Belgium | 7 days | 9 times a day | 63 |
| 290 | Laferton_2020 | Laferton_2020 | NA | good | good | 98 | 25.46 | 6.65 | 83.70 | NA | Austria, Germany, Switzerland | 10 days | 1 time a day | 10 |
| 292 | Leki_2017_study3 | Leki_2017 | study3 | good | good | 52 | 19.54 | NA | 65.38 | NA | US | 21 days | 1 time a day | 21 |
| 298 | Mey_2020 | Mey_2020 | NA | good | good | 70 | 23.93 | 3.15 | 59.00 | NA | Germany | 28 days | 5 times a day | 140 |
| 299 | Mill_2016 | Mill_2016 | NA | fair | fair | 110 | 44.75 | 3.25 | 63.64 | NA | Estonia | 14 days | 7 times a day | 98 |
| 314 | Ottenstein_2020 | Ottenstein_2020 | NA | good | good | 72 | 22.85 | 2.40 | 68.00 | NA | Germany | 21 days | 3 times a day | 63 |
| 320 | Pavani_2017 | Pavani_2017 | NA | good | good | 78 | 44.55 | 18.01 | 62.00 | NA | France | 14 days | 5 times a day | 70 |
| 324 | Pelt_2020 | Pelt_2020 | NA | good | fair | 1223 | 29.47 | 10.49 | 86.26 | NA | Germany | 30 days | 1 time a day | 30 |
| 334 | Roberts_1997 | Roberts_1997 | NA | good | good | 92 | 18.70 | 1.30 | 100.00 | NA | US | 7 days | 1 time a day | 7 |
| 338 | Slavish_2018 | Slavish_2018 | NA | good | good | 242 | 46.80 | 10.90 | 66.50 | 27.30 | US | 14 days | 2 times a day | 28 |
| 348 | Steffens_2017 | Steffens_2017 | NA | fair | good | 32 | 28.80 | 5.60 | 53.13 | NA | Canada | 7 days | 11 times a day | 77 |
| 353 | Sun_2017_study3 | Sun_2017 | study3 | good | good | 62 | 21.40 | 3.55 | 62.90 | NA | Australia | 7 days | 6 times a day | 42 |
| 354 | Watson_1992_study2 | Watson_1992 | study2 | fair | fair | 127 | NA | NA | NA | NA | US | 45 days | 1 time a day | 45 |
| 364 | Watson_unpub_study1 | Watson_unpub | study1 | NA | NA | 366 | NA | NA | 71.31 | NA | US | 55 days | 1 time a day | 55 |
| 374 | Watson_unpub_study2 | Watson_unpub | study2 | NA | NA | 295 | NA | NA | 69.49 | NA | US | 55 days | 1 time a day | 55 |
| 384 | Weltz_2016 | Weltz_2016 | NA | good | good | 1634 | 19.23 | 1.41 | 53.70 | 79.60 | US | 30 day | 1 time a day | 30 |
| 385 | Wenzel_2015_study2 | Wenzel_2015 | study2 | fair | good | 108 | 25.20 | 6.60 | 80.56 | NA | Germany | 6 days | 1 time a day | 6 |
| 390 | Willroth_2020_sampleUSCA | Willroth_2020 | sampleUSCA | good | good | 130 | 47.00 | 17.00 | 97.48 | 56.00 | US | 16 days | 1 time a day | 16 |
| 392 | Willroth_2020_sampleUSUG | Willroth_2020 | sampleUSUG | good | fair | 184 | 19.00 | 2.00 | 72.11 | 26.00 | US | 21 days | 1 time a day | 21 |
| 394 | Wilson_2017_sample1 | Wilson_2017 | sample1 | good | fair | 124 | 20.10 | 2.30 | 67.00 | 43.50 | US | 6 days | 6 times a day | 36 |
| 404 | Wilson_2017_sample2 | Wilson_2017 | sample2 | good | fair | 415 | 19.30 | 2.00 | 68.00 | 50.00 | US | 14 days | 4 times a day | 56 |
| 412 | Wilt_2017_sample1 | Wilt_2017 | sample1 | good | good | 40 | 23.50 | 5.61 | 72.50 | NA | US | 14 days | 6 times a day | 84 |
| 416 | Wilt_2017_sample2 | Wilt_2017 | sample2 | good | good | 40 | 20.60 | 2.22 | 82.50 | NA | US | 14 days | 6 times a day | 84 |
| 420 | Wilt_2012_sample1 | Wilt_2012 | sample1 | fair | good | 44 | NA | NA | NA | NA | US | 13 days | 5 times a day | 65 |
| 421 | Wilt_2012_sample2 | Wilt_2012 | sample2 | fair | good | 62 | 27.90 | NA | NA | NA | US | 10 days | 5 times a day | 50 |
| 422 | Wilt_2012_sample3 | Wilt_2012 | sample3 | fair | good | 48 | NA | NA | NA | NA | US | 10 weeks | 1 time a week | 10 |
| 423 | Wilt_2012_sample4 | Wilt_2012 | sample4 | fair | good | 97 | NA | NA | NA | NA | US | 10 weeks | 1 time a week | 10 |
| 424 | Wilt_2019 | Wilt_2019 | NA | good | good | 78 | 26.60 | 7.90 | 80.77 | 66.67 | US | 7 days | 4 times a day | 28 |
| 434 | Windsor_2021 | Windsor_2021 | NA | good | good | 73 | 88.71 | 2.99 | 67.00 | NA | Australia | 7 days | 5 times a day | 35 |
| 436 | Zhang_2019 | Zhang_2019 | NA | good | good | 139 | 19.50 | 1.07 | 73.00 | NA | China | 14 days | 1 time a day | 14 |
| 446 | Long_2003 | Long_2003 | NA | good | good | 163 | 20.00 | NA | 80.98 | NA | US | 7 days | 1 time a day | 7 |
| 456 | Mackinnon_2021_sample1 | Mackinnon_2021 | sample1 | good | good | 263 | 21.37 | 1.89 | 79.80 | 78.30 | Canada | 20 days | 1 time a day | 20 |
| 466 | Ryvkina_2023_S1W1 | Ryvkina_2023 | S1W1 | good | good | 313 | 23.00 | 6.80 | 78.20 | NA | Germany | 14 days | 6 times a day | 84 |
| 468 | Ryvkina_2023_S2W2 | Ryvkina_2023 | S2W2 | good | good | 914 | 41.00 | 12.40 | 80.60 | NA | Germany | 14 days | 6 times a day | 84 |
| 478 | Shui_2023 | Shui_2023 | NA | good | good | 80 | 19.10 | NA | NA | NA | China | 14 days | 1 time a day | 14 |
| 488 | Smith-Pickering_2022 | Smith-Pickering_2022 | NA | good | good | 290 | 31.85 | 1.98 | 60.00 | 51.20 | NA | 13 days | 1 time a day | 13 |
| 498 | Smith-DeNunzio_2022 | Smith-DeNunzio_2022 | NA | good | good | 114 | 36.20 | 9.30 | 48.00 | 86.00 | NA | 5 days | 1 time a day | 5 |
| 501 | Sweeny_2020_study1 | Sweeny_2020 | study1 | good | fair | 120 | NA | NA | 68.00 | 17.00 | US | 4 days | 1 time a day | 4 |
| 505 | Sweeny_2020_study2 | Sweeny_2020 | study2 | good | fair | 203 | NA | NA | 61.00 | 67.00 | US | 4 months | 2 times a month | 8 |
| 509 | Sweeny_unpub | Sweeny_unpub | NA | NA | NA | 102 | 27.61 | 7.16 | 53.00 | 63.00 | NA | 8 days | 1 time a day | 8 |
| 519 | Kalokerinos_2019_study2 | Kalokerinos_2019 | study2 | NA | NA | 101 | 18.64 | 1.45 | NA | NA | Belgium | 9 days | 10 times a day | 90 |
| 529 | Grommisch_2020 | Grommisch_2020 | NA | NA | NA | 179 | 27.02 | 8.98 | 65.00 | NA | Australia | 21 days | 9 times a day | 189 |
| 539 | Erbas_2018_wave1 | Erbas_2018 | wave1 | NA | NA | 200 | 18.32 | 0.97 | 55.00 | NA | Belgium | 7 days | 10 times a day | 70 |
| 549 | Haines_2016 | Haines_2016 | NA | NA | NA | 78 | 23.26 | 3.54 | 61.00 | NA | Australia | 4 days | 10 times a day | 40 |
| 559 | Sels_2017 | Sels_2017 | NA | NA | NA | 100 | 27.75 | 10.60 | 50.00 | NA | Belgium | 7 days | 10 times a day | 70 |
| 569 | Brans_2013_study2 | Brans_2013 | study2 | NA | NA | 95 | 19.06 | 1.28 | 62.11 | NA | Belgium | 7 days | 10 times a day | 70 |
| 579 | Pasyugina_2015 | Pasyugina_2015 | NA | NA | NA | 101 | 21.40 | 2.15 | 73.70 | NA | Belgium | 9 days | 10 times a day | 90 |
| 589 | Medland_2020 | Medland_2020 | NA | NA | NA | 132 | 21.14 | 3.51 | 66.70 | 18.20 | Australia | 7 days | 8 times a day | 56 |
| 594 | Kuppens_2010_study2 | Kuppens_2010 | study2 | NA | NA | 60 | 23.00 | NA | 66.67 | NA | Belgium | 4 days | 50 times a day | 200 |
| 599 | Koval_2019_study1 | Koval_2019 | study1 | NA | NA | 81 | 22.33 | 5.47 | 100.00 | 46.90 | Australia | 7 days | 10 times a day | 70 |
| 609 | Koval_2019_study2 | Koval_2019 | study2 | NA | NA | 87 | 23.52 | 4.11 | 100.00 | 32.20 | Australia | 7 days | 10 times a day | 70 |
| 619 | Koval_2019_study3 | Koval_2019 | study3 | NA | NA | 100 | 26.46 | 6.12 | 100.00 | 65.00 | US | 7 days | 10 times a day | 70 |
| 629 | Dejonckheere_2019 | Dejonckheere_2019 | NA | NA | NA | 100 | 24.12 | 6.87 | 77.00 | NA | Belgium | 14 days | 7 times a day | 98 |
| 639 | Kalokerinos_unpub | Kalokerinos_unpub | NA | NA | NA | NA | NA | NA | NA | NA | United Kingdom | 7 days | 1 time a day | 7 |
| 649 | Greenaway_unpub | Greenaway_unpub | NA | NA | NA | NA | NA | NA | NA | NA | United Kingdom | 7 days | 1 time a day | 7 |
There are a total of 658 effects from 88 studies/samples from 73 papers, with a total of \(N =\) 20813 people.
# numeric descriptives
dat %>% select(ID, Sample_Size, Age_Mean, Female_Perc, White_Perc, Time_No) %>%
unique() %>%
select(-ID) %>%
descr(stats = "common", order = "p")
Descriptive Statistics
dat
N: 88
| Sample_Size | Age_Mean | Female_Perc | White_Perc | Time_No | |
|---|---|---|---|---|---|
| Mean | 247.36 | 27.29 | 67.96 | 64.30 | 48.53 |
| Std.Dev | 402.37 | 10.88 | 15.16 | 23.42 | 39.58 |
| Min | 32.00 | 14.70 | 9.00 | 17.00 | 4.00 |
| Median | 109.00 | 23.50 | 66.85 | 66.84 | 39.50 |
| Max | 2626.00 | 88.71 | 100.00 | 100.00 | 200.00 |
| N.Valid | 86.00 | 77.00 | 78.00 | 32.00 | 88.00 |
| Pct.Valid | 97.73 | 87.50 | 88.64 | 36.36 | 100.00 |
# frequencies of samples
freq(dat %>% select(ID, Location) %>% unique() %>% pull(Location), order = "freq")
Frequencies
| Freq | % Valid | % Valid Cum. | % Total | % Total Cum. | |
|---|---|---|---|---|---|
| US | 31 | 37.35 | 37.35 | 35.23 | 35.23 |
| Belgium | 12 | 14.46 | 51.81 | 13.64 | 48.86 |
| Germany | 10 | 12.05 | 63.86 | 11.36 | 60.23 |
| Australia | 8 | 9.64 | 73.49 | 9.09 | 69.32 |
| Canada | 4 | 4.82 | 78.31 | 4.55 | 73.86 |
| New Zealand | 4 | 4.82 | 83.13 | 4.55 | 78.41 |
| United Kingdom | 3 | 3.61 | 86.75 | 3.41 | 81.82 |
| Austria, Germany, Switzerland | 2 | 2.41 | 89.16 | 2.27 | 84.09 |
| China | 2 | 2.41 | 91.57 | 2.27 | 86.36 |
| Estonia | 2 | 2.41 | 93.98 | 2.27 | 88.64 |
| France | 2 | 2.41 | 96.39 | 2.27 | 90.91 |
| Italy | 2 | 2.41 | 98.80 | 2.27 | 93.18 |
| Finland | 1 | 1.20 | 100.00 | 1.14 | 94.32 |
| 5 | 5.68 | 100.00 | |||
| Total | 88 | 100.00 | 100.00 | 100.00 | 100.00 |
freq(dat %>% select(ID, Frequency) %>% unique() %>% pull(Frequency), order = "freq")
Frequencies
| Freq | % Valid | % Valid Cum. | % Total | % Total Cum. | |
|---|---|---|---|---|---|
| 1 time a day | 37 | 42.05 | 42.05 | 42.05 | 42.05 |
| 10 times a day | 12 | 13.64 | 55.68 | 13.64 | 55.68 |
| 5 times a day | 10 | 11.36 | 67.05 | 11.36 | 67.05 |
| 6 times a day | 8 | 9.09 | 76.14 | 9.09 | 76.14 |
| 3 times a day | 5 | 5.68 | 81.82 | 5.68 | 81.82 |
| 7 times a day | 3 | 3.41 | 85.23 | 3.41 | 85.23 |
| 1 time a week | 2 | 2.27 | 87.50 | 2.27 | 87.50 |
| 4 times a day | 2 | 2.27 | 89.77 | 2.27 | 89.77 |
| 8 times a day | 2 | 2.27 | 92.05 | 2.27 | 92.05 |
| 9 times a day | 2 | 2.27 | 94.32 | 2.27 | 94.32 |
| 11 times a day | 1 | 1.14 | 95.45 | 1.14 | 95.45 |
| 2 times a day | 1 | 1.14 | 96.59 | 1.14 | 96.59 |
| 2 times a month | 1 | 1.14 | 97.73 | 1.14 | 97.73 |
| 50 times a day | 1 | 1.14 | 98.86 | 1.14 | 98.86 |
| event-contingent | 1 | 1.14 | 100.00 | 1.14 | 100.00 |
| 0 | 0.00 | 100.00 | |||
| Total | 88 | 100.00 | 100.00 | 100.00 | 100.00 |
freq(dat %>% select(ID, Personality) %>% unique() %>% pull(Personality), order = "freq")
Frequencies
| Freq | % Valid | % Valid Cum. | % Total | % Total Cum. | |
|---|---|---|---|---|---|
| N | 79 | 24.09 | 24.09 | 24.09 | 24.09 |
| E | 72 | 21.95 | 46.04 | 21.95 | 46.04 |
| C | 63 | 19.21 | 65.24 | 19.21 | 65.24 |
| A | 58 | 17.68 | 82.93 | 17.68 | 82.93 |
| O | 56 | 17.07 | 100.00 | 17.07 | 100.00 |
| 0 | 0.00 | 100.00 | |||
| Total | 328 | 100.00 | 100.00 | 100.00 | 100.00 |
freq(dat %>% select(ID, Emotion_Cat) %>% unique() %>% pull(Emotion_Cat), order = "freq")
Frequencies
| Freq | % Valid | % Valid Cum. | % Total | % Total Cum. | |
|---|---|---|---|---|---|
| pa | 76 | 48.72 | 48.72 | 48.72 | 48.72 |
| na | 73 | 46.79 | 95.51 | 46.79 | 95.51 |
| neu | 7 | 4.49 | 100.00 | 4.49 | 100.00 |
| 0 | 0.00 | 100.00 | |||
| Total | 156 | 100.00 | 100.00 | 100.00 | 100.00 |
freq(dat %>% select(ID, Raw) %>% unique() %>% pull(Raw), order = "freq")
Frequencies
| Freq | % Valid | % Valid Cum. | % Total | % Total Cum. | |
|---|---|---|---|---|---|
| yes | 80 | 90.91 | 90.91 | 90.91 | 90.91 |
| no | 8 | 9.09 | 100.00 | 9.09 | 100.00 |
| 0 | 0.00 | 100.00 | |||
| Total | 88 | 100.00 | 100.00 | 100.00 | 100.00 |
freq(dat %>% select(ID, Study_Quality) %>% unique() %>% pull(Study_Quality), order = "freq")
Frequencies
| Freq | % Valid | % Valid Cum. | % Total | % Total Cum. | |
|---|---|---|---|---|---|
| good | 54 | 77.14 | 77.14 | 61.36 | 61.36 |
| fair | 16 | 22.86 | 100.00 | 18.18 | 79.55 |
| 18 | 20.45 | 100.00 | |||
| Total | 88 | 100.00 | 100.00 | 100.00 | 100.00 |
Kappa’s agreement on study quality ratings and proportion of agreement:
# kappa's agreement on study quality ratings
rating_dat <- dat %>%
select(ID, Study_Quality, Study_Quality_Reli) %>%
unique() %>%
select(Study_Quality, Study_Quality_Reli)
kappa2(ratings = rating_dat)
## Cohen's Kappa for 2 Raters (Weights: unweighted)
##
## Subjects = 70
## Raters = 2
## Kappa = 0.109
##
## z = 0.91
## p-value = 0.363
# proportion of agreement
sum(rating_dat$Study_Quality == rating_dat$Study_Quality_Reli, na.rm=T)/
nrow(na.omit(rating_dat)) * 100
## [1] 68.57143
Kappa’s agreement on abstract screening and proportion of agreement:
# clean rayyan
rayyan$notes <- sub(".*?\\{", "", rayyan$notes)
rayyan$notes <- sub("\\}.*", "", rayyan$notes)
rayyan <- separate(rayyan, notes, into = paste0("decision_", 1:2), sep = ",")
rayyan$decision_1 <- sub(".*?>", "", rayyan$decision_1)
rayyan$decision_2 <- sub(".*?>", "", rayyan$decision_2)
rayyan$decision_1 <- gsub('"', '', rayyan$decision_1)
rayyan$decision_2 <- gsub('"', '', rayyan$decision_2)
rayyan$decision_1 <- sub("Maybe", "Included", rayyan$decision_1)
rayyan$decision_2 <- sub("Maybe", "Included", rayyan$decision_2)
# kappa's agreement
kappa2(ratings = rayyan)
## Cohen's Kappa for 2 Raters (Weights: unweighted)
##
## Subjects = 4848
## Raters = 2
## Kappa = 0.383
##
## z = 27.2
## p-value = 0
# proportion of agreement
sum(rayyan$decision_1 == rayyan$decision_2, na.rm=T)/
nrow(na.omit(rayyan)) * 100
## [1] 80.44554
# compute sampling variances `vi` for Cor_SD
dat <- escalc(measure = "COR",
ri = Cor_SD,
ni = Cor_N,
data = dat,
slab = ID) %>% select(-yi) %>%
rename(vi_SD = vi)
# compute sampling variances `vi` for Cor_RVI
dat <- escalc(measure = "COR",
ri = Cor_RVI,
ni = Cor_N,
data = dat,
slab = ID) %>% select(-yi) %>%
rename(vi_RVI = vi)
# compute sampling variances `vi` for Cor_Mean
dat <- escalc(measure = "COR",
ri = Cor_Mean,
ni = Cor_N,
data = dat,
slab = ID) %>% select(-yi) %>%
rename(vi_Mean = vi)
# compute sampling variances `vi` for Cor_BCLSM
dat <- escalc(measure = "COR",
ri = Cor_BCLSM,
ni = BCLSM_N,
data = dat,
slab = ID) %>% select(-yi) %>%
rename(vi_BCLSM = vi)
# initialize table for all results
results_df <- data.frame(
trait = rep(c("A", "C", "E", "N", "O"), each = 3),
emo = c("all", "pa", "na"),
cor_SD = NA,
p_SD = NA,
CI_SD = NA,
k_SD = NA,
Q_SD = NA,
Qp_SD = NA,
PI_SD = NA,
I2_SD = NA,
tau2_SD = NA,
cor_RVI = NA,
p_RVI = NA,
CI_RVI = NA,
k_RVI = NA,
Q_RVI = NA,
Qp_RVI = NA,
PI_RVI = NA,
I2_RVI = NA,
tau2_RVI = NA,
cor_BCLSM = NA,
p_BCLSM = NA,
CI_BCLSM = NA,
k_BCLSM = NA,
Q_BCLSM = NA,
Qp_BCLSM = NA,
PI_BCLSM = NA,
I2_BCLSM = NA,
tau2_BCLSM = NA
)
These un-preregistered exploratory analyses aim to further clarify the relationship between the two metrics: SD and RVI, especially in relation to the mean and scale boundaries.
# create an index of how far away from the boundaries the mean is
dat <- dat %>%
rowwise() %>%
mutate(
# distance from the closer boundary (min or max)
mean_dist = min(Mean_Affect - Min, Max - Mean_Affect)
)
# divide by whole range
dat$mean_dist <- dat$mean_dist/(dat$Max - dat$Min)
dat$mean_relative <- dat$Mean_Affect/dat$Max
# create unique data frame of only emotions
dat_emo <- dat %>%
select(ID, Emotion_Cat, Mean_SD, Mean_RVI, SD_RVI, mean_dist, mean_relative) %>%
unique()
# descriptives of correlations between
# (1) mean and sd
# (2) mean and rvi
# (3) sd and rvi
# and distance from boundaries
dat_emo %>%
group_by(Emotion_Cat) %>%
select(mean_dist, mean_relative, Mean_SD, Mean_RVI, SD_RVI) %>%
descr(stats = "common")
Descriptive Statistics
dat_emo
Group: Emotion_Cat = na
N: 77
| mean_dist | mean_relative | Mean_RVI | Mean_SD | SD_RVI | |
|---|---|---|---|---|---|
| Mean | 0.18 | 0.29 | -0.16 | 0.56 | 0.45 |
| Std.Dev | 0.08 | 0.11 | 0.18 | 0.16 | 0.27 |
| Min | 0.05 | 0.09 | -0.58 | -0.13 | -0.27 |
| Median | 0.18 | 0.32 | -0.15 | 0.57 | 0.50 |
| Max | 0.47 | 0.63 | 0.25 | 0.86 | 0.98 |
| N.Valid | 69.00 | 69.00 | 69.00 | 69.00 | 69.00 |
| Pct.Valid | 89.61 | 89.61 | 89.61 | 89.61 | 89.61 |
Group: Emotion_Cat = neu
N: 7
| mean_dist | mean_relative | Mean_RVI | Mean_SD | SD_RVI | |
|---|---|---|---|---|---|
| Mean | 0.32 | 0.58 | -0.01 | -0.07 | 0.78 |
| Std.Dev | 0.09 | 0.18 | 0.30 | 0.37 | 0.37 |
| Min | 0.12 | 0.29 | -0.52 | -0.43 | -0.04 |
| Median | 0.35 | 0.65 | -0.03 | -0.18 | 0.92 |
| Max | 0.39 | 0.74 | 0.42 | 0.68 | 0.99 |
| N.Valid | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 |
| Pct.Valid | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Group: Emotion_Cat = pa
N: 78
| mean_dist | mean_relative | Mean_RVI | Mean_SD | SD_RVI | |
|---|---|---|---|---|---|
| Mean | 0.40 | 0.56 | -0.05 | -0.04 | 0.85 |
| Std.Dev | 0.08 | 0.10 | 0.19 | 0.25 | 0.20 |
| Min | 0.07 | 0.20 | -0.62 | -0.60 | -0.04 |
| Median | 0.41 | 0.57 | -0.07 | -0.06 | 0.91 |
| Max | 0.50 | 0.75 | 0.41 | 0.78 | 0.99 |
| N.Valid | 71.00 | 71.00 | 71.00 | 71.00 | 71.00 |
| Pct.Valid | 91.03 | 91.03 | 91.03 | 91.03 | 91.03 |
# scatterplot between distance from boundaries and correlation between SD and RVI
ggplot(data = na.omit(dat_emo),
aes(x = mean_dist, y = SD_RVI,
color = Emotion_Cat,
shape = Emotion_Cat)) +
geom_point(size = 2) +
theme_classic() +
labs(
x = "Distance from scale boundaries in proportion",
y = "Correlation between SD and RVI",
title = paste(
"Scatterplot between distance from boundaries and SD-RVI correlations\n",
"r =", round(cor(dat_emo$mean_dist, dat_emo$SD_RVI, use = "pair"), 2),
"p < .001"),
color = "Emotion Type",
shape = "Emotion Type"
)
# scatterplot between distance from boundaries and mean-SD correlations
ggplot(data = na.omit(dat_emo),
aes(x = mean_dist, y = Mean_SD,
color = Emotion_Cat,
shape = Emotion_Cat)) +
geom_point(size = 2) +
theme_classic() +
labs(
x = "Distance from scale boundaries in proportion",
y = "Correlation between mean and SD",
title = paste(
"Scatterplot between distance from boundaries and mean-SD correlations\n",
"r =", round(cor(dat_emo$mean_dist, dat_emo$Mean_SD, use = "pair"), 2),
"p < .001"),
color = "Emotion Type",
shape = "Emotion Type"
)
# scatterplot between distance from boundaries and mean-RVI correlations
ggplot(data = na.omit(dat_emo),
aes(x = mean_dist, y = Mean_RVI,
color = Emotion_Cat,
shape = Emotion_Cat)) +
geom_point(size = 2) +
theme_classic() +
labs(
x = "Distance from scale boundaries in proportion",
y = "Correlation between mean and RVI",
title = paste(
"Scatterplot between distance from boundaries and mean-RVI correlations\n",
"r =", round(cor(dat_emo$mean_dist, dat_emo$Mean_RVI, use = "pair"), 2),
"p < .001"),
color = "Emotion Type",
shape = "Emotion Type"
)
# histogram of relative means
ggplot(data = na.omit(dat_emo[dat_emo$Emotion_Cat == "na",]),
aes(x = mean_relative)) +
geom_histogram(binwidth = 0.03,
color = "#E69F00",
fill = "#710c0c") +
theme_classic() +
labs(
title = "Histogram of Mean-Level on Negative Affect",
x = "Relative Mean Level"
) +
xlim(0.1, 1.0)
## Warning: Removed 1 rows containing non-finite values (`stat_bin()`).
## Warning: Removed 2 rows containing missing values (`geom_bar()`).
ggplot(data = na.omit(dat_emo[dat_emo$Emotion_Cat == "pa",]),
aes(x = mean_relative)) +
geom_histogram(binwidth = 0.03,
color = "#E69F00",
fill = "#710c0c") +
theme_classic() +
labs(
title = "Histogram of Mean-Level on Positive Affect",
x = "Relative Mean Level"
) +
xlim(0.1, 1.0)
## Warning: Removed 2 rows containing missing values (`geom_bar()`).
results_df <- fit_meta(trait = "N", .data = dat, output = results_df)
##
## Multivariate Meta-Analysis Model (k = 150; method: REML)
##
## Variance Components:
##
## outer factor: ID (nlvls = 74)
## inner factor: factor(Emotion_Cat) (nlvls = 2)
##
## estim sqrt fixed
## tau^2 0.0044 0.0662 no
## rho 0.4273 no
##
## Test for Residual Heterogeneity:
## QE(df = 148) = 310.5485, p-val < .0001
##
## Number of estimates: 150
## Number of clusters: 74
## Estimates per cluster: 1-7 (mean: 2.03, median: 2)
##
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 53.61) = 230.9184, p-val < .0001
##
## Model Results:
##
## estimate se¹ tval¹ df¹ pval¹ ci.lb¹
## intrcpt 0.3033 0.0117 25.9549 59.4 <.0001 0.2799
## factor(Emotion_Cat)pa -0.2248 0.0148 -15.1960 53.61 <.0001 -0.2544
## ci.ub¹
## intrcpt 0.3267 ***
## factor(Emotion_Cat)pa -0.1951 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## 1) results based on cluster-robust inference (var-cov estimator: CR2,
## approx t/F-tests and confidence intervals, df: Satterthwaite approx)
##
## Multivariate Meta-Analysis Model (k = 122; method: REML)
##
## Variance Components:
##
## outer factor: ID (nlvls = 61)
## inner factor: factor(Study_Quality) (nlvls = 2)
##
## estim sqrt fixed
## tau^2 0.0058 0.0765 no
## rho 0.5000 no
##
## Test for Residual Heterogeneity:
## QE(df = 120) = 829.9909, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.0469, p-val = 0.8286
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.2183 0.0300 7.2872 <.0001 0.1596 0.2770
## factor(Study_Quality)good -0.0071 0.0329 -0.2166 0.8286 -0.0715 0.0573
##
## intrcpt ***
## factor(Study_Quality)good
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multivariate Meta-Analysis Model (k = 133; method: REML)
##
## Variance Components:
##
## outer factor: ID (nlvls = 68)
## inner factor: factor(Emotion_Cat) (nlvls = 2)
##
## estim sqrt fixed
## tau^2 0.0086 0.0926 no
## rho 0.5067 no
##
## Test for Residual Heterogeneity:
## QE(df = 131) = 374.5068, p-val < .0001
##
## Number of estimates: 133
## Number of clusters: 68
## Estimates per cluster: 1-4 (mean: 1.96, median: 2)
##
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 52.71) = 47.9640, p-val < .0001
##
## Model Results:
##
## estimate se¹ tval¹ df¹ pval¹ ci.lb¹
## intrcpt -0.0626 0.0165 -3.7876 58.54 0.0004 -0.0957
## factor(Emotion_Cat)pa 0.1253 0.0181 6.9256 52.71 <.0001 0.0890
## ci.ub¹
## intrcpt -0.0295 ***
## factor(Emotion_Cat)pa 0.1616 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## 1) results based on cluster-robust inference (var-cov estimator: CR2,
## approx t/F-tests and confidence intervals, df: Satterthwaite approx)
##
## Multivariate Meta-Analysis Model (k = 109; method: REML)
##
## Variance Components:
##
## outer factor: ID (nlvls = 57)
## inner factor: factor(Study_Quality) (nlvls = 2)
##
## estim sqrt fixed
## tau^2 0.0081 0.0902 no
## rho 0.5000 no
##
## Test for Residual Heterogeneity:
## QE(df = 107) = 500.8071, p-val < .0001
##
## Number of estimates: 109
## Number of clusters: 57
## Estimates per cluster: 1-4 (mean: 1.91, median: 2)
##
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 9.88) = 1.0270, p-val = 0.3350
##
## Model Results:
##
## estimate se¹ tval¹ df¹ pval¹
## intrcpt 0.0293 0.0334 0.8764 7.32 0.4087
## factor(Study_Quality)good -0.0375 0.0370 -1.0134 9.88 0.3350
## ci.lb¹ ci.ub¹
## intrcpt -0.0490 0.1076
## factor(Study_Quality)good -0.1202 0.0451
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## 1) results based on cluster-robust inference (var-cov estimator: CR2,
## approx t/F-tests and confidence intervals, df: Satterthwaite approx)
##
## Multivariate Meta-Analysis Model (k = 132; method: REML)
##
## Variance Components:
##
## outer factor: ID (nlvls = 67)
## inner factor: factor(Emotion_Cat) (nlvls = 2)
##
## estim sqrt fixed
## tau^2 0.0078 0.0881 no
## rho 0.7246 no
##
## Test for Residual Heterogeneity:
## QE(df = 130) = 322.5981, p-val < .0001
##
## Number of estimates: 132
## Number of clusters: 67
## Estimates per cluster: 1-4 (mean: 1.97, median: 2)
##
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 45.27) = 35.5427, p-val < .0001
##
## Model Results:
##
## estimate se¹ tval¹ df¹ pval¹ ci.lb¹
## intrcpt 0.1599 0.0158 10.1124 57.26 <.0001 0.1283
## factor(Emotion_Cat)pa -0.0926 0.0155 -5.9618 45.27 <.0001 -0.1238
## ci.ub¹
## intrcpt 0.1916 ***
## factor(Emotion_Cat)pa -0.0613 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## 1) results based on cluster-robust inference (var-cov estimator: CR2,
## approx t/F-tests and confidence intervals, df: Satterthwaite approx)
##
## Multivariate Meta-Analysis Model (k = 108; method: REML)
##
## Variance Components:
##
## outer factor: ID (nlvls = 56)
## inner factor: factor(Study_Quality) (nlvls = 2)
##
## estim sqrt fixed
## tau^2 0.0072 0.0849 no
## rho 0.5000 no
##
## Test for Residual Heterogeneity:
## QE(df = 106) = 370.6036, p-val < .0001
##
## Number of estimates: 108
## Number of clusters: 56
## Estimates per cluster: 1-4 (mean: 1.93, median: 2)
##
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 9.93) = 0.0942, p-val = 0.7652
##
## Model Results:
##
## estimate se¹ tval¹ df¹ pval¹
## intrcpt 0.1300 0.0430 3.0223 7.32 0.0183
## factor(Study_Quality)good -0.0139 0.0454 -0.3070 9.93 0.7652
## ci.lb¹ ci.ub¹
## intrcpt 0.0292 0.2307 *
## factor(Study_Quality)good -0.1153 0.0874
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## 1) results based on cluster-robust inference (var-cov estimator: CR2,
## approx t/F-tests and confidence intervals, df: Satterthwaite approx)
results_df <- fit_meta(trait = "E", .data = dat, output = results_df)
##
## Multivariate Meta-Analysis Model (k = 130; method: REML)
##
## Variance Components:
##
## outer factor: ID (nlvls = 66)
## inner factor: factor(Emotion_Cat) (nlvls = 2)
##
## estim sqrt fixed
## tau^2 0.0065 0.0809 no
## rho 0.7993 no
##
## Test for Residual Heterogeneity:
## QE(df = 128) = 273.5444, p-val < .0001
##
## Number of estimates: 130
## Number of clusters: 66
## Estimates per cluster: 1-7 (mean: 1.97, median: 2)
##
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 36.35) = 69.1654, p-val < .0001
##
## Model Results:
##
## estimate se¹ tval¹ df¹ pval¹ ci.lb¹
## intrcpt -0.0507 0.0136 -3.7374 50.15 0.0005 -0.0779
## factor(Emotion_Cat)pa 0.1240 0.0149 8.3166 36.35 <.0001 0.0938
## ci.ub¹
## intrcpt -0.0235 ***
## factor(Emotion_Cat)pa 0.1542 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## 1) results based on cluster-robust inference (var-cov estimator: CR2,
## approx t/F-tests and confidence intervals, df: Satterthwaite approx)
##
## Multivariate Meta-Analysis Model (k = 103; method: REML)
##
## Variance Components:
##
## outer factor: ID (nlvls = 54)
## inner factor: factor(Study_Quality) (nlvls = 2)
##
## estim sqrt fixed
## tau^2 0.0055 0.0740 no
## rho 0.5000 no
##
## Test for Residual Heterogeneity:
## QE(df = 101) = 365.6576, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 1.9100, p-val = 0.1670
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.0402 0.0285 1.4113 0.1582 -0.0156 0.0961
## factor(Study_Quality)good -0.0448 0.0324 -1.3820 0.1670 -0.1084 0.0187
##
## intrcpt
## factor(Study_Quality)good
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multivariate Meta-Analysis Model (k = 113; method: REML)
##
## Variance Components:
##
## outer factor: ID (nlvls = 60)
## inner factor: factor(Emotion_Cat) (nlvls = 2)
##
## estim sqrt fixed
## tau^2 0.0039 0.0623 no
## rho 1.0000 no
##
## Test for Residual Heterogeneity:
## QE(df = 111) = 190.1526, p-val < .0001
##
## Number of estimates: 113
## Number of clusters: 60
## Estimates per cluster: 1-4 (mean: 1.88, median: 2)
##
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 15.86) = 7.5824, p-val = 0.0142
##
## Model Results:
##
## estimate se¹ tval¹ df¹ pval¹ ci.lb¹
## intrcpt 0.0790 0.0127 6.2388 39.33 <.0001 0.0534
## factor(Emotion_Cat)pa -0.0330 0.0120 -2.7536 15.86 0.0142 -0.0585
## ci.ub¹
## intrcpt 0.1046 ***
## factor(Emotion_Cat)pa -0.0076 *
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## 1) results based on cluster-robust inference (var-cov estimator: CR2,
## approx t/F-tests and confidence intervals, df: Satterthwaite approx)
##
## Multivariate Meta-Analysis Model (k = 90; method: REML)
##
## Variance Components:
##
## outer factor: ID (nlvls = 50)
## inner factor: factor(Study_Quality) (nlvls = 2)
##
## estim sqrt fixed
## tau^2 0.0030 0.0551 no
## rho 0.5000 no
##
## Test for Residual Heterogeneity:
## QE(df = 88) = 156.9802, p-val < .0001
##
## Number of estimates: 90
## Number of clusters: 50
## Estimates per cluster: 1-4 (mean: 1.80, median: 2)
##
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 13.8) = 1.7301, p-val = 0.2098
##
## Model Results:
##
## estimate se¹ tval¹ df¹ pval¹
## intrcpt 0.0839 0.0218 3.8542 9.47 0.0035
## factor(Study_Quality)good -0.0339 0.0257 -1.3153 13.8 0.2098
## ci.lb¹ ci.ub¹
## intrcpt 0.0350 0.1327 **
## factor(Study_Quality)good -0.0892 0.0214
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## 1) results based on cluster-robust inference (var-cov estimator: CR2,
## approx t/F-tests and confidence intervals, df: Satterthwaite approx)
##
## Multivariate Meta-Analysis Model (k = 113; method: REML)
##
## Variance Components:
##
## outer factor: ID (nlvls = 60)
## inner factor: factor(Emotion_Cat) (nlvls = 2)
##
## estim sqrt fixed
## tau^2 0.0056 0.0746 no
## rho 0.9977 no
##
## Test for Residual Heterogeneity:
## QE(df = 111) = 203.0535, p-val < .0001
##
## Number of estimates: 113
## Number of clusters: 60
## Estimates per cluster: 1-4 (mean: 1.88, median: 2)
##
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 15.18) = 40.5171, p-val < .0001
##
## Model Results:
##
## estimate se¹ tval¹ df¹ pval¹ ci.lb¹
## intrcpt -0.0040 0.0139 -0.2896 42.92 0.7735 -0.0320
## factor(Emotion_Cat)pa 0.0797 0.0125 6.3653 15.18 <.0001 0.0530
## ci.ub¹
## intrcpt 0.0239
## factor(Emotion_Cat)pa 0.1064 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## 1) results based on cluster-robust inference (var-cov estimator: CR2,
## approx t/F-tests and confidence intervals, df: Satterthwaite approx)
##
## Multivariate Meta-Analysis Model (k = 90; method: REML)
##
## Variance Components:
##
## outer factor: ID (nlvls = 50)
## inner factor: factor(Study_Quality) (nlvls = 2)
##
## estim sqrt fixed
## tau^2 0.0043 0.0656 no
## rho 0.5000 no
##
## Test for Residual Heterogeneity:
## QE(df = 88) = 196.6602, p-val < .0001
##
## Number of estimates: 90
## Number of clusters: 50
## Estimates per cluster: 1-4 (mean: 1.80, median: 2)
##
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 14.83) = 2.3764, p-val = 0.1442
##
## Model Results:
##
## estimate se¹ tval¹ df¹ pval¹
## intrcpt 0.0722 0.0243 2.9652 9.89 0.0143
## factor(Study_Quality)good -0.0443 0.0287 -1.5416 14.83 0.1442
## ci.lb¹ ci.ub¹
## intrcpt 0.0179 0.1265 *
## factor(Study_Quality)good -0.1056 0.0170
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## 1) results based on cluster-robust inference (var-cov estimator: CR2,
## approx t/F-tests and confidence intervals, df: Satterthwaite approx)
results_df <- fit_meta(trait = "A", .data = dat, output = results_df)
##
## Multivariate Meta-Analysis Model (k = 112; method: REML)
##
## Variance Components:
##
## outer factor: ID (nlvls = 53)
## inner factor: factor(Emotion_Cat) (nlvls = 2)
##
## estim sqrt fixed
## tau^2 0.0088 0.0939 no
## rho 0.8579 no
##
## Test for Residual Heterogeneity:
## QE(df = 110) = 269.6759, p-val < .0001
##
## Number of estimates: 112
## Number of clusters: 53
## Estimates per cluster: 1-7 (mean: 2.11, median: 2)
##
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 31.84) = 44.3148, p-val < .0001
##
## Model Results:
##
## estimate se¹ tval¹ df¹ pval¹ ci.lb¹
## intrcpt -0.1045 0.0163 -6.4158 45.96 <.0001 -0.1373
## factor(Emotion_Cat)pa 0.1022 0.0154 6.6569 31.84 <.0001 0.0709
## ci.ub¹
## intrcpt -0.0717 ***
## factor(Emotion_Cat)pa 0.1335 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## 1) results based on cluster-robust inference (var-cov estimator: CR2,
## approx t/F-tests and confidence intervals, df: Satterthwaite approx)
##
## Multivariate Meta-Analysis Model (k = 84; method: REML)
##
## Variance Components:
##
## outer factor: ID (nlvls = 40)
## inner factor: factor(Study_Quality) (nlvls = 2)
##
## estim sqrt fixed
## tau^2 0.0106 0.1032 no
## rho 0.5000 no
##
## Test for Residual Heterogeneity:
## QE(df = 82) = 310.0257, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.0338, p-val = 0.8540
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt -0.0713 0.0421 -1.6916 0.0907 -0.1539 0.0113
## factor(Study_Quality)good 0.0087 0.0472 0.1840 0.8540 -0.0838 0.1012
##
## intrcpt .
## factor(Study_Quality)good
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multivariate Meta-Analysis Model (k = 97; method: REML)
##
## Variance Components:
##
## outer factor: ID (nlvls = 48)
## inner factor: factor(Emotion_Cat) (nlvls = 2)
##
## estim sqrt fixed
## tau^2 0.0091 0.0952 no
## rho 0.8895 no
##
## Test for Residual Heterogeneity:
## QE(df = 95) = 232.6265, p-val < .0001
##
## Number of estimates: 97
## Number of clusters: 48
## Estimates per cluster: 1-4 (mean: 2.02, median: 2)
##
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 25.68) = 9.4137, p-val = 0.0050
##
## Model Results:
##
## estimate se¹ tval¹ df¹ pval¹ ci.lb¹
## intrcpt 0.0506 0.0168 3.0109 41.15 0.0044 0.0167
## factor(Emotion_Cat)pa -0.0492 0.0160 -3.0682 25.68 0.0050 -0.0821
## ci.ub¹
## intrcpt 0.0845 **
## factor(Emotion_Cat)pa -0.0162 **
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## 1) results based on cluster-robust inference (var-cov estimator: CR2,
## approx t/F-tests and confidence intervals, df: Satterthwaite approx)
##
## Multivariate Meta-Analysis Model (k = 73; method: REML)
##
## Variance Components:
##
## outer factor: ID (nlvls = 37)
## inner factor: factor(Study_Quality) (nlvls = 2)
##
## estim sqrt fixed
## tau^2 0.0092 0.0961 no
## rho 0.5000 no
##
## Test for Residual Heterogeneity:
## QE(df = 71) = 212.5704, p-val < .0001
##
## Number of estimates: 73
## Number of clusters: 37
## Estimates per cluster: 1-4 (mean: 1.97, median: 2)
##
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 7.71) = 0.3587, p-val = 0.5664
##
## Model Results:
##
## estimate se¹ tval¹ df¹ pval¹
## intrcpt -0.0184 0.0721 -0.2546 5.5 0.8082
## factor(Study_Quality)good 0.0445 0.0744 0.5989 7.71 0.5664
## ci.lb¹ ci.ub¹
## intrcpt -0.1988 0.1621
## factor(Study_Quality)good -0.1281 0.2172
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## 1) results based on cluster-robust inference (var-cov estimator: CR2,
## approx t/F-tests and confidence intervals, df: Satterthwaite approx)
##
## Multivariate Meta-Analysis Model (k = 97; method: REML)
##
## Variance Components:
##
## outer factor: ID (nlvls = 48)
## inner factor: factor(Emotion_Cat) (nlvls = 2)
##
## estim sqrt fixed
## tau^2 0.0096 0.0982 no
## rho 0.8740 no
##
## Test for Residual Heterogeneity:
## QE(df = 95) = 248.2551, p-val < .0001
##
## Number of estimates: 97
## Number of clusters: 48
## Estimates per cluster: 1-4 (mean: 2.02, median: 2)
##
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 26.78) = 4.9074, p-val = 0.0354
##
## Model Results:
##
## estimate se¹ tval¹ df¹ pval¹ ci.lb¹
## intrcpt -0.0352 0.0184 -1.9177 41.4 0.0621 -0.0723
## factor(Emotion_Cat)pa 0.0366 0.0165 2.2153 26.78 0.0354 0.0027
## ci.ub¹
## intrcpt 0.0019 .
## factor(Emotion_Cat)pa 0.0706 *
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## 1) results based on cluster-robust inference (var-cov estimator: CR2,
## approx t/F-tests and confidence intervals, df: Satterthwaite approx)
##
## Multivariate Meta-Analysis Model (k = 73; method: REML)
##
## Variance Components:
##
## outer factor: ID (nlvls = 37)
## inner factor: factor(Study_Quality) (nlvls = 2)
##
## estim sqrt fixed
## tau^2 0.0090 0.0948 no
## rho 0.5000 no
##
## Test for Residual Heterogeneity:
## QE(df = 71) = 214.3815, p-val < .0001
##
## Number of estimates: 73
## Number of clusters: 37
## Estimates per cluster: 1-4 (mean: 1.97, median: 2)
##
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 7.73) = 0.9816, p-val = 0.3518
##
## Model Results:
##
## estimate se¹ tval¹ df¹ pval¹
## intrcpt -0.0811 0.0715 -1.1352 5.5 0.3033
## factor(Study_Quality)good 0.0730 0.0737 0.9908 7.73 0.3518
## ci.lb¹ ci.ub¹
## intrcpt -0.2599 0.0976
## factor(Study_Quality)good -0.0980 0.2440
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## 1) results based on cluster-robust inference (var-cov estimator: CR2,
## approx t/F-tests and confidence intervals, df: Satterthwaite approx)
results_df <- fit_meta(trait = "C", .data = dat, output = results_df)
##
## Multivariate Meta-Analysis Model (k = 128; method: REML)
##
## Variance Components:
##
## outer factor: ID (nlvls = 58)
## inner factor: factor(Emotion_Cat) (nlvls = 2)
##
## estim sqrt fixed
## tau^2 0.0029 0.0537 no
## rho 1.0000 no
##
## Test for Residual Heterogeneity:
## QE(df = 126) = 181.8460, p-val = 0.0008
##
## Number of estimates: 128
## Number of clusters: 58
## Estimates per cluster: 1-10 (mean: 2.21, median: 2)
##
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 20.49) = 95.8076, p-val < .0001
##
## Model Results:
##
## estimate se¹ tval¹ df¹ pval¹ ci.lb¹
## intrcpt -0.1211 0.0110 -10.9755 41.94 <.0001 -0.1434
## factor(Emotion_Cat)pa 0.1074 0.0110 9.7881 20.49 <.0001 0.0845
## ci.ub¹
## intrcpt -0.0988 ***
## factor(Emotion_Cat)pa 0.1302 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## 1) results based on cluster-robust inference (var-cov estimator: CR2,
## approx t/F-tests and confidence intervals, df: Satterthwaite approx)
##
## Multivariate Meta-Analysis Model (k = 100; method: REML)
##
## Variance Components:
##
## outer factor: ID (nlvls = 45)
## inner factor: factor(Study_Quality) (nlvls = 2)
##
## estim sqrt fixed
## tau^2 0.0017 0.0413 no
## rho 0.5000 no
##
## Test for Residual Heterogeneity:
## QE(df = 98) = 203.0795, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.8303, p-val = 0.3622
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt -0.0905 0.0257 -3.5162 0.0004 -0.1410 -0.0401
## factor(Study_Quality)good 0.0254 0.0279 0.9112 0.3622 -0.0292 0.0800
##
## intrcpt ***
## factor(Study_Quality)good
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multivariate Meta-Analysis Model (k = 105; method: REML)
##
## Variance Components:
##
## outer factor: ID (nlvls = 53)
## inner factor: factor(Emotion_Cat) (nlvls = 2)
##
## estim sqrt fixed
## tau^2 0.0098 0.0992 no
## rho 0.3678 no
##
## Test for Residual Heterogeneity:
## QE(df = 103) = 274.8285, p-val < .0001
##
## Number of estimates: 105
## Number of clusters: 53
## Estimates per cluster: 1-4 (mean: 1.98, median: 2)
##
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 43.52) = 5.6366, p-val = 0.0221
##
## Model Results:
##
## estimate se¹ tval¹ df¹ pval¹ ci.lb¹
## intrcpt 0.0510 0.0188 2.7212 44.76 0.0092 0.0133
## factor(Emotion_Cat)pa -0.0534 0.0225 -2.3742 43.52 0.0221 -0.0987
## ci.ub¹
## intrcpt 0.0888 **
## factor(Emotion_Cat)pa -0.0081 *
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## 1) results based on cluster-robust inference (var-cov estimator: CR2,
## approx t/F-tests and confidence intervals, df: Satterthwaite approx)
##
## Multivariate Meta-Analysis Model (k = 81; method: REML)
##
## Variance Components:
##
## outer factor: ID (nlvls = 42)
## inner factor: factor(Study_Quality) (nlvls = 2)
##
## estim sqrt fixed
## tau^2 0.0079 0.0887 no
## rho 0.5000 no
##
## Test for Residual Heterogeneity:
## QE(df = 79) = 265.1099, p-val < .0001
##
## Number of estimates: 81
## Number of clusters: 42
## Estimates per cluster: 1-4 (mean: 1.93, median: 2)
##
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 7.23) = 2.6208, p-val = 0.1482
##
## Model Results:
##
## estimate se¹ tval¹ df¹ pval¹
## intrcpt -0.0459 0.0472 -0.9727 5.41 0.3722
## factor(Study_Quality)good 0.0817 0.0505 1.6189 7.23 0.1482
## ci.lb¹ ci.ub¹
## intrcpt -0.1645 0.0727
## factor(Study_Quality)good -0.0369 0.2002
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## 1) results based on cluster-robust inference (var-cov estimator: CR2,
## approx t/F-tests and confidence intervals, df: Satterthwaite approx)
##
## Multivariate Meta-Analysis Model (k = 103; method: REML)
##
## Variance Components:
##
## outer factor: ID (nlvls = 52)
## inner factor: factor(Emotion_Cat) (nlvls = 2)
##
## estim sqrt fixed
## tau^2 0.0073 0.0857 no
## rho 1.0000 no
##
## Test for Residual Heterogeneity:
## QE(df = 101) = 218.5766, p-val < .0001
##
## Number of estimates: 103
## Number of clusters: 52
## Estimates per cluster: 1-4 (mean: 1.98, median: 2)
##
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 15.03) = 8.7916, p-val = 0.0096
##
## Model Results:
##
## estimate se¹ tval¹ df¹ pval¹ ci.lb¹
## intrcpt -0.0428 0.0156 -2.7362 43.45 0.0090 -0.0743
## factor(Emotion_Cat)pa 0.0337 0.0114 2.9651 15.03 0.0096 0.0095
## ci.ub¹
## intrcpt -0.0113 **
## factor(Emotion_Cat)pa 0.0579 **
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## 1) results based on cluster-robust inference (var-cov estimator: CR2,
## approx t/F-tests and confidence intervals, df: Satterthwaite approx)
##
## Multivariate Meta-Analysis Model (k = 79; method: REML)
##
## Variance Components:
##
## outer factor: ID (nlvls = 41)
## inner factor: factor(Study_Quality) (nlvls = 2)
##
## estim sqrt fixed
## tau^2 0.0060 0.0773 no
## rho 0.5000 no
##
## Test for Residual Heterogeneity:
## QE(df = 77) = 169.9816, p-val < .0001
##
## Number of estimates: 79
## Number of clusters: 41
## Estimates per cluster: 1-4 (mean: 1.93, median: 2)
##
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 7.07) = 1.9392, p-val = 0.2060
##
## Model Results:
##
## estimate se¹ tval¹ df¹ pval¹
## intrcpt -0.0977 0.0587 -1.6639 5.31 0.1536
## factor(Study_Quality)good 0.0845 0.0607 1.3925 7.07 0.2060
## ci.lb¹ ci.ub¹
## intrcpt -0.2460 0.0506
## factor(Study_Quality)good -0.0587 0.2278
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## 1) results based on cluster-robust inference (var-cov estimator: CR2,
## approx t/F-tests and confidence intervals, df: Satterthwaite approx)
results_df <- fit_meta(trait = "O", .data = dat, output = results_df)
##
## Multivariate Meta-Analysis Model (k = 107; method: REML)
##
## Variance Components:
##
## outer factor: ID (nlvls = 51)
## inner factor: factor(Emotion_Cat) (nlvls = 2)
##
## estim sqrt fixed
## tau^2 0.0098 0.0992 no
## rho 0.9363 no
##
## Test for Residual Heterogeneity:
## QE(df = 105) = 259.2885, p-val < .0001
##
## Number of estimates: 107
## Number of clusters: 51
## Estimates per cluster: 1-7 (mean: 2.10, median: 2)
##
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 25.3) = 24.3791, p-val < .0001
##
## Model Results:
##
## estimate se¹ tval¹ df¹ pval¹ ci.lb¹
## intrcpt -0.0031 0.0164 -0.1870 44.66 0.8525 -0.0362
## factor(Emotion_Cat)pa 0.0707 0.0143 4.9375 25.3 <.0001 0.0412
## ci.ub¹
## intrcpt 0.0300
## factor(Emotion_Cat)pa 0.1001 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## 1) results based on cluster-robust inference (var-cov estimator: CR2,
## approx t/F-tests and confidence intervals, df: Satterthwaite approx)
##
## Multivariate Meta-Analysis Model (k = 79; method: REML)
##
## Variance Components:
##
## outer factor: ID (nlvls = 38)
## inner factor: factor(Study_Quality) (nlvls = 2)
##
## estim sqrt fixed
## tau^2 0.0093 0.0963 no
## rho 0.5000 no
##
## Test for Residual Heterogeneity:
## QE(df = 77) = 245.8930, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.0165, p-val = 0.8979
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.0292 0.0403 0.7229 0.4697 -0.0499 0.1082
## factor(Study_Quality)good 0.0058 0.0454 0.1283 0.8979 -0.0832 0.0948
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multivariate Meta-Analysis Model (k = 92; method: REML)
##
## Variance Components:
##
## outer factor: ID (nlvls = 46)
## inner factor: factor(Emotion_Cat) (nlvls = 2)
##
## estim sqrt fixed
## tau^2 0.0070 0.0836 no
## rho 0.4541 no
##
## Test for Residual Heterogeneity:
## QE(df = 90) = 202.3818, p-val < .0001
##
## Number of estimates: 92
## Number of clusters: 46
## Estimates per cluster: 1-4 (mean: 2.00, median: 2)
##
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 34.78) = 0.2959, p-val = 0.5900
##
## Model Results:
##
## estimate se¹ tval¹ df¹ pval¹ ci.lb¹
## intrcpt 0.0450 0.0167 2.6886 37.61 0.0106 0.0111
## factor(Emotion_Cat)pa 0.0115 0.0212 0.5439 34.78 0.5900 -0.0315
## ci.ub¹
## intrcpt 0.0788 *
## factor(Emotion_Cat)pa 0.0546
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## 1) results based on cluster-robust inference (var-cov estimator: CR2,
## approx t/F-tests and confidence intervals, df: Satterthwaite approx)
##
## Multivariate Meta-Analysis Model (k = 68; method: REML)
##
## Variance Components:
##
## outer factor: ID (nlvls = 35)
## inner factor: factor(Study_Quality) (nlvls = 2)
##
## estim sqrt fixed
## tau^2 0.0047 0.0684 no
## rho 0.5000 no
##
## Test for Residual Heterogeneity:
## QE(df = 66) = 170.1374, p-val < .0001
##
## Number of estimates: 68
## Number of clusters: 35
## Estimates per cluster: 1-4 (mean: 1.94, median: 2)
##
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 7.18) = 0.0090, p-val = 0.9271
##
## Model Results:
##
## estimate se¹ tval¹ df¹ pval¹ ci.lb¹
## intrcpt 0.0588 0.0445 1.3208 5.22 0.2415 -0.0542
## factor(Study_Quality)good 0.0045 0.0474 0.0948 7.18 0.9271 -0.1070
## ci.ub¹
## intrcpt 0.1718
## factor(Study_Quality)good 0.1159
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## 1) results based on cluster-robust inference (var-cov estimator: CR2,
## approx t/F-tests and confidence intervals, df: Satterthwaite approx)
##
## Multivariate Meta-Analysis Model (k = 92; method: REML)
##
## Variance Components:
##
## outer factor: ID (nlvls = 46)
## inner factor: factor(Emotion_Cat) (nlvls = 2)
##
## estim sqrt fixed
## tau^2 0.0067 0.0817 no
## rho 0.9587 no
##
## Test for Residual Heterogeneity:
## QE(df = 90) = 181.2950, p-val < .0001
##
## Number of estimates: 92
## Number of clusters: 46
## Estimates per cluster: 1-4 (mean: 2.00, median: 2)
##
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 16.75) = 17.2601, p-val = 0.0007
##
## Model Results:
##
## estimate se¹ tval¹ df¹ pval¹ ci.lb¹
## intrcpt 0.0137 0.0150 0.9119 37.35 0.3676 -0.0167
## factor(Emotion_Cat)pa 0.0598 0.0144 4.1545 16.75 0.0007 0.0294
## ci.ub¹
## intrcpt 0.0441
## factor(Emotion_Cat)pa 0.0903 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## 1) results based on cluster-robust inference (var-cov estimator: CR2,
## approx t/F-tests and confidence intervals, df: Satterthwaite approx)
##
## Multivariate Meta-Analysis Model (k = 68; method: REML)
##
## Variance Components:
##
## outer factor: ID (nlvls = 35)
## inner factor: factor(Study_Quality) (nlvls = 2)
##
## estim sqrt fixed
## tau^2 0.0062 0.0786 no
## rho 0.5000 no
##
## Test for Residual Heterogeneity:
## QE(df = 66) = 167.7987, p-val < .0001
##
## Number of estimates: 68
## Number of clusters: 35
## Estimates per cluster: 1-4 (mean: 1.94, median: 2)
##
## Test of Moderators (coefficient 2):¹
## F(df1 = 1, df2 = 7.49) = 0.0038, p-val = 0.9525
##
## Model Results:
##
## estimate se¹ tval¹ df¹ pval¹
## intrcpt 0.0666 0.0552 1.2058 5.34 0.2786
## factor(Study_Quality)good -0.0036 0.0578 -0.0616 7.49 0.9525
## ci.lb¹ ci.ub¹
## intrcpt -0.0726 0.2057
## factor(Study_Quality)good -0.1385 0.1314
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## 1) results based on cluster-robust inference (var-cov estimator: CR2,
## approx t/F-tests and confidence intervals, df: Satterthwaite approx)
Here are the full results for all emotions, positive, and negative emotions using within-person SD and RVI
results_df %>%
knitr::kable() %>%
kable_styling(bootstrap_options = c("striped")) %>%
column_spec(c(5, 9, 14, 18), width_min = "1.25in") %>%
scroll_box(width = "900px")
| trait | emo | cor_SD | p_SD | CI_SD | k_SD | Q_SD | Qp_SD | PI_SD | I2_SD | tau2_SD | cor_RVI | p_RVI | CI_RVI | k_RVI | Q_RVI | Qp_RVI | PI_RVI | I2_RVI | tau2_RVI | cor_BCLSM | p_BCLSM | CI_BCLSM | k_BCLSM | Q_BCLSM | Qp_BCLSM | PI_BCLSM | I2_BCLSM | tau2_BCLSM |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| A | all | -0.06 | 0.00028 | [-0.08 - -0.03] | 118 | 360.97 | 0 | [-0.24 - 0.13] | 71.26 | 0.01 | 0.02 | 0.12407 | [-0.01 - 0.06] | 103 | 264.74 | 0 | [-0.16 - 0.21] | 69.81 | 0.01 | -0.02 | 0.21665 | [-0.05 - 0.01] | 103 | 271.44 | 0 | [-0.21 - 0.17] | 68.88 | 0.01 |
| A | pa | -0.01 | 0.7135 | [-0.04 - 0.03] | 55 | 126.82 | 0 | [-0.19 - 0.18] | 64.2 | 0.01 | 0.01 | 0.60933 | [-0.03 - 0.05] | 48 | 126.12 | 0 | [-0.2 - 0.22] | 71.74 | 0.01 | 0 | 0.94373 | [-0.04 - 0.04] | 48 | 117.87 | 0 | [-0.2 - 0.19] | 68.34 | 0.01 |
| A | na | -0.1 | 0 | [-0.13 - -0.07] | 57 | 142.86 | 0 | [-0.26 - 0.07] | 64.77 | 0.01 | 0.05 | 0.00373 | [0.02 - 0.08] | 49 | 106.51 | 0 | [-0.11 - 0.21] | 64.52 | 0.01 | -0.03 | 0.1036 | [-0.06 - 0.01] | 49 | 130.38 | 0 | [-0.21 - 0.15] | 68.36 | 0.01 |
| C | all | -0.07 | 0 | [-0.09 - -0.05] | 134 | 267.41 | 0 | [-0.17 - 0.03] | 51.19 | 0 | 0.02 | 0.21709 | [-0.01 - 0.05] | 111 | 324.93 | 0 | [-0.16 - 0.2] | 73.43 | 0.01 | -0.03 | 0.04071 | [-0.06 - 0] | 109 | 243.67 | 0 | [-0.21 - 0.15] | 64.71 | 0.01 |
| C | pa | -0.02 | 0.12861 | [-0.04 - 0.01] | 63 | 96.22 | 0.00349 | [-0.11 - 0.08] | 29.37 | 0 | 0 | 0.98598 | [-0.04 - 0.03] | 53 | 119.01 | 0 | [-0.19 - 0.19] | 65.68 | 0.01 | -0.01 | 0.48149 | [-0.04 - 0.02] | 51 | 109.01 | 0 | [-0.18 - 0.16] | 62.92 | 0.01 |
| C | na | -0.12 | 0 | [-0.14 - -0.1] | 65 | 85.63 | 0.03688 | [-0.2 - -0.03] | 28.47 | 0 | 0.05 | 0.0109 | [0.01 - 0.09] | 52 | 155.82 | 0 | [-0.17 - 0.27] | 75.48 | 0.01 | -0.04 | 0.01286 | [-0.07 - -0.01] | 52 | 109.57 | 0 | [-0.2 - 0.12] | 61.98 | 0.01 |
| E | all | 0.01 | 0.31601 | [-0.01 - 0.04] | 137 | 440.6 | 0 | [-0.15 - 0.17] | 69.02 | 0.01 | 0.06 | 0 | [0.04 - 0.09] | 120 | 198.72 | 0.00001 | [-0.06 - 0.19] | 43.6 | 0 | 0.04 | 0.00455 | [0.01 - 0.06] | 120 | 257.9 | 0 | [-0.12 - 0.19] | 55.19 | 0.01 |
| E | pa | 0.07 | 0.00005 | [0.04 - 0.1] | 67 | 156.16 | 0 | [-0.1 - 0.24] | 61.45 | 0.01 | 0.05 | 0.00072 | [0.02 - 0.08] | 59 | 102.82 | 0.00026 | [-0.08 - 0.18] | 45.12 | 0 | 0.07 | 0.00002 | [0.04 - 0.1] | 59 | 108.91 | 0.00006 | [-0.07 - 0.2] | 47.67 | 0 |
| E | na | -0.05 | 0.0005 | [-0.07 - -0.02] | 63 | 117.38 | 0.00003 | [-0.18 - 0.08] | 53.25 | 0 | 0.07 | 0 | [0.05 - 0.1] | 54 | 87.33 | 0.00208 | [-0.04 - 0.19] | 43.84 | 0 | 0 | 0.9991 | [-0.03 - 0.03] | 54 | 94.15 | 0.00043 | [-0.13 - 0.13] | 50.09 | 0 |
| N | all | 0.21 | 0 | [0.19 - 0.23] | 156 | 921.74 | 0 | [0.07 - 0.35] | 81.63 | 0.02 | 0 | 0.95411 | [-0.02 - 0.03] | 139 | 545.07 | 0 | [-0.17 - 0.17] | 75.03 | 0.01 | 0.12 | 0 | [0.1 - 0.15] | 138 | 430.96 | 0 | [-0.05 - 0.29] | 70.48 | 0.01 |
| N | pa | 0.08 | 0 | [0.06 - 0.1] | 72 | 126.79 | 0.00005 | [-0.04 - 0.2] | 47.4 | 0 | 0.06 | 0.00004 | [0.03 - 0.09] | 64 | 118.38 | 0.00003 | [-0.08 - 0.2] | 51.22 | 0 | 0.07 | 0 | [0.04 - 0.1] | 64 | 118.05 | 0.00003 | [-0.06 - 0.21] | 50.61 | 0 |
| N | na | 0.3 | 0 | [0.28 - 0.32] | 78 | 183.76 | 0 | [0.16 - 0.44] | 62 | 0.01 | -0.06 | 0.00074 | [-0.09 - -0.03] | 69 | 256.13 | 0 | [-0.27 - 0.16] | 75.66 | 0.01 | 0.16 | 0 | [0.13 - 0.19] | 68 | 204.55 | 0 | [-0.05 - 0.36] | 74.15 | 0.01 |
| O | all | 0.03 | 0.04588 | [0 - 0.06] | 113 | 316.95 | 0 | [-0.16 - 0.22] | 67.63 | 0.01 | 0.05 | 0.00049 | [0.02 - 0.08] | 98 | 216.75 | 0 | [-0.1 - 0.2] | 60.61 | 0.01 | 0.04 | 0.00519 | [0.01 - 0.07] | 98 | 221.82 | 0 | [-0.12 - 0.21] | 58.65 | 0.01 |
| O | pa | 0.06 | 0.00184 | [0.02 - 0.1] | 53 | 146.81 | 0 | [-0.14 - 0.27] | 70.29 | 0.01 | 0.06 | 0.00213 | [0.02 - 0.09] | 46 | 106.16 | 0 | [-0.12 - 0.23] | 62.39 | 0.01 | 0.07 | 0.00053 | [0.03 - 0.1] | 46 | 107.77 | 0 | [-0.11 - 0.24] | 62.67 | 0.01 |
| O | na | 0.01 | 0.55243 | [-0.02 - 0.04] | 54 | 112.48 | 0 | [-0.15 - 0.17] | 60.18 | 0.01 | 0.05 | 0.00717 | [0.01 - 0.08] | 46 | 96.22 | 0.00001 | [-0.11 - 0.2] | 60.28 | 0.01 | 0.02 | 0.07638 | [0 - 0.05] | 46 | 73.52 | 0.00462 | [-0.09 - 0.14] | 42.86 | 0 |
rio::export(results_df, "final_results.RDS")
To more accurately directly compare approaches using SD and RVI, we are refitting all models for within-person SD using the subset of the data for which raw data were available to calculate RVI.
# duplicate results_df structure
robust_df <- data.frame(
trait = rep(c("A", "C", "E", "N", "O")),
cor_SD = NA,
p_SD = NA,
CI_SD = NA,
k_SD = NA,
Q_SD = NA,
Qp_SD = NA
)
for(trait in c("N", "E", "A", "C", "O")){
meta_obj <- robust(rma.mv(yi = Cor_SD,
V = vi_SD,
data = dat[dat$Personality == trait &
!is.na(dat$Cor_RVI), ],
method = "REML",
level = 95,
digits = 4,
slab = ID,
random = ~1 | ID),
clubSandwich = T,
cluster = ID)
robust_df[robust_df$trait == trait, c("cor_SD", "p_SD", "CI_SD", "k_SD",
"Q_SD", "Qp_SD")] <- c(
round(meta_obj$b, 2), round(meta_obj$pval, 5),
paste0("[", round(meta_obj$ci.lb, 2),
" - ", round(meta_obj$ci.ub, 2), "]"),
meta_obj$k,
round(meta_obj$QE, 2), round(meta_obj$QEp, 5))
}
robust_df %>% knitr::kable() %>% kable_styling(bootstrap_options = c("striped"))
| trait | cor_SD | p_SD | CI_SD | k_SD | Q_SD | Qp_SD |
|---|---|---|---|---|---|---|
| A | -0.06 | 0.00065 | [-0.09 - -0.03] | 103 | 315.52 | 0 |
| C | -0.07 | 0 | [-0.09 - -0.05] | 111 | 230.87 | 0 |
| E | 0.01 | 0.41467 | [-0.02 - 0.04] | 120 | 382.75 | 0 |
| N | 0.2 | 0 | [0.18 - 0.23] | 139 | 775.56 | 0 |
| O | 0.02 | 0.1753 | [-0.01 - 0.05] | 98 | 273.63 | 0 |
for(trait in c("N", "E", "A", "C", "O")) {
# get model object
mod_obj <- get(paste0(trait, "_sd"))
# funnel plot
funnel(mod_obj,
xlim=c(-1,1),
xlab= paste("Correlations:", trait, "- emotion SD"),
steps = 4,
digits = c(1, 2),
back = "white")
# test for funnel plot asymmetry
print(ranktest(mod_obj))
}
##
## Rank Correlation Test for Funnel Plot Asymmetry
##
## Kendall's tau = -0.1639, p = 0.0023
## Warning in cor.test.default(yi.star, vi, method = "kendall", exact = exact):
## Cannot compute exact p-value with ties
##
## Rank Correlation Test for Funnel Plot Asymmetry
##
## Kendall's tau = 0.0944, p = 0.1019
## Warning in cor.test.default(yi.star, vi, method = "kendall", exact = exact):
## Cannot compute exact p-value with ties
##
## Rank Correlation Test for Funnel Plot Asymmetry
##
## Kendall's tau = -0.0380, p = 0.5423
## Warning in cor.test.default(yi.star, vi, method = "kendall", exact = exact):
## Cannot compute exact p-value with ties
##
## Rank Correlation Test for Funnel Plot Asymmetry
##
## Kendall's tau = 0.0588, p = 0.3135
## Warning in cor.test.default(yi.star, vi, method = "kendall", exact = exact):
## Cannot compute exact p-value with ties
##
## Rank Correlation Test for Funnel Plot Asymmetry
##
## Kendall's tau = -0.0754, p = 0.2366
for(trait in c("N", "E", "A", "C", "O")) {
# get model object
mod_obj <- get(paste0(trait, "_rvi"))
# funnel plot
funnel(mod_obj,
xlim=c(-1,1),
xlab= paste("Correlations:", trait, "- emotion RVI"),
steps = 4,
digits = c(1, 2),
back = "white")
# test for funnel plot asymmetry
print(ranktest(mod_obj))
}
##
## Rank Correlation Test for Funnel Plot Asymmetry
##
## Kendall's tau = -0.0495, p = 0.3888
##
## Rank Correlation Test for Funnel Plot Asymmetry
##
## Kendall's tau = 0.0754, p = 0.2237
##
## Rank Correlation Test for Funnel Plot Asymmetry
##
## Kendall's tau = -0.0695, p = 0.3004
##
## Rank Correlation Test for Funnel Plot Asymmetry
##
## Kendall's tau = 0.0143, p = 0.8269
##
## Rank Correlation Test for Funnel Plot Asymmetry
##
## Kendall's tau = -0.0848, p = 0.2179
for(trait in c("N", "E", "A", "C", "O")) {
# get model object
mod_obj <- get(paste0(trait, "_bclsm"))
# funnel plot
funnel(mod_obj,
xlim=c(-1,1),
xlab= paste("Correlations:", trait, "- emotion BCLSM"),
steps = 4,
digits = c(1, 2),
back = "white")
# test for funnel plot asymmetry
print(ranktest(mod_obj))
}
## Warning in cor.test.default(yi.star, vi, method = "kendall", exact = exact):
## Cannot compute exact p-value with ties
##
## Rank Correlation Test for Funnel Plot Asymmetry
##
## Kendall's tau = -0.1560, p = 0.0067
## Warning in cor.test.default(yi.star, vi, method = "kendall", exact = exact):
## Cannot compute exact p-value with ties
##
## Rank Correlation Test for Funnel Plot Asymmetry
##
## Kendall's tau = 0.1073, p = 0.0823
## Warning in cor.test.default(yi.star, vi, method = "kendall", exact = exact):
## Cannot compute exact p-value with ties
##
## Rank Correlation Test for Funnel Plot Asymmetry
##
## Kendall's tau = -0.0543, p = 0.4167
## Warning in cor.test.default(yi.star, vi, method = "kendall", exact = exact):
## Cannot compute exact p-value with ties
##
## Rank Correlation Test for Funnel Plot Asymmetry
##
## Kendall's tau = 0.0602, p = 0.3539
## Warning in cor.test.default(yi.star, vi, method = "kendall", exact = exact):
## Cannot compute exact p-value with ties
##
## Rank Correlation Test for Funnel Plot Asymmetry
##
## Kendall's tau = -0.0794, p = 0.2472
{robumeta}# duplicate results_df structure
robumeta_df <- data.frame(
trait = rep(c("A", "C", "E", "N", "O"), each = 3),
emo = c("all", "pa", "na"),
cor_SD = NA,
p_SD = NA,
CI_SD = NA,
k_SD = NA,
cor_RVI = NA,
p_RVI = NA,
CI_RVI = NA,
k_RVI = NA,
cor_BCLSM = NA,
p_BCLSM = NA,
CI_BCLSM = NA,
k_BCLSM = NA
)
for(trait in c("N", "E", "A", "C", "O")) {
robumeta_df <- fit_robumeta(trait = trait, .data = dat,
output = robumeta_df)
}
robumeta_df %>%
knitr::kable() %>%
kable_styling(bootstrap_options = c("striped"))
| trait | emo | cor_SD | p_SD | CI_SD | k_SD | cor_RVI | p_RVI | CI_RVI | k_RVI | cor_BCLSM | p_BCLSM | CI_BCLSM | k_BCLSM |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| A | all | -0.05 | 0.00014 | [-0.08 - -0.03] | 58 | 0.02 | 0.13531 | [-0.01 - 0.05] | 53 | -0.02 | 0.19379 | [-0.05 - 0.01] | 53 |
| A | pa | 0 | 0.87177 | [-0.04 - 0.03] | 51 | 0.01 | 0.61568 | [-0.03 - 0.05] | 46 | 0 | 0.97278 | [-0.04 - 0.04] | 46 |
| A | na | -0.1 | 0 | [-0.13 - -0.07] | 50 | 0.05 | 0.00302 | [0.02 - 0.08] | 45 | -0.03 | 0.12066 | [-0.06 - 0.01] | 45 |
| C | all | -0.07 | 0 | [-0.09 - -0.05] | 63 | 0.02 | 0.27244 | [-0.01 - 0.04] | 58 | -0.03 | 0.01655 | [-0.06 - -0.01] | 57 |
| C | pa | -0.01 | 0.20345 | [-0.04 - 0.01] | 55 | 0 | 0.92785 | [-0.04 - 0.03] | 50 | -0.01 | 0.51245 | [-0.04 - 0.02] | 49 |
| C | na | -0.12 | 0 | [-0.14 - -0.09] | 55 | 0.05 | 0.00889 | [0.01 - 0.09] | 49 | -0.04 | 0.01029 | [-0.07 - -0.01] | 49 |
| E | all | 0.01 | 0.30154 | [-0.01 - 0.04] | 72 | 0.07 | 0 | [0.04 - 0.09] | 66 | 0.04 | 0.00474 | [0.01 - 0.06] | 66 |
| E | pa | 0.07 | 0.00003 | [0.04 - 0.1] | 63 | 0.05 | 0.00033 | [0.03 - 0.08] | 57 | 0.07 | 0.00001 | [0.04 - 0.1] | 57 |
| E | na | -0.05 | 0.00078 | [-0.07 - -0.02] | 57 | 0.07 | 0 | [0.05 - 0.1] | 51 | 0 | 0.97006 | [-0.03 - 0.03] | 51 |
| N | all | 0.19 | 0 | [0.18 - 0.21] | 79 | 0 | 0.71545 | [-0.02 - 0.03] | 73 | 0.12 | 0 | [0.1 - 0.15] | 72 |
| N | pa | 0.08 | 0 | [0.06 - 0.1] | 68 | 0.06 | 0.00002 | [0.04 - 0.09] | 62 | 0.07 | 0 | [0.04 - 0.1] | 62 |
| N | na | 0.3 | 0 | [0.28 - 0.32] | 71 | -0.06 | 0.00081 | [-0.09 - -0.03] | 65 | 0.16 | 0 | [0.13 - 0.19] | 64 |
| O | all | 0.03 | 0.01999 | [0.01 - 0.06] | 56 | 0.05 | 0.00033 | [0.02 - 0.08] | 51 | 0.04 | 0.00276 | [0.02 - 0.07] | 51 |
| O | pa | 0.06 | 0.00101 | [0.03 - 0.1] | 49 | 0.06 | 0.00221 | [0.02 - 0.1] | 44 | 0.07 | 0.00044 | [0.03 - 0.1] | 44 |
| O | na | 0.01 | 0.4969 | [-0.02 - 0.04] | 48 | 0.05 | 0.00729 | [0.01 - 0.08] | 43 | 0.02 | 0.09496 | [0 - 0.05] | 43 |
Although this meta-analysis did not focus on the relationship between personality traits and mean level of affect, this association can be examined using the raw data that we obtained and are presented here for further context in understanding our patterns of results.
# initialize table for all results
mean_df <- data.frame(
trait = rep(c("A", "C", "E", "N", "O"), each = 3),
emo = c("all", "pa", "na"),
cor_Mean = NA,
p_Mean = NA,
CI_Mean = NA,
k_Mean = NA,
Q_Mean = NA,
Qp_Mean = NA,
PI_Mean = NA,
I2_Mean = NA,
tau2_Mean = NA
)
Here are the full results for all emotions, positive, and negative emotions using within-person Means
mean_df %>%
knitr::kable() %>%
kable_styling(bootstrap_options = c("striped")) %>%
column_spec(c(5, 9), width_min = "1.25in") %>%
scroll_box(width = "900px")
| trait | emo | cor_Mean | p_Mean | CI_Mean | k_Mean | Q_Mean | Qp_Mean | PI_Mean | I2_Mean | tau2_Mean |
|---|---|---|---|---|---|---|---|---|---|---|
| A | all | 0.01 | 0.60184 | [-0.02 - 0.03] | 103 | 1586.27 | 0 | [-0.1 - 0.11] | 93.55 | 0.05 |
| A | pa | 0.2 | 0 | [0.15 - 0.24] | 48 | 231.76 | 0 | [-0.05 - 0.44] | 83.1 | 0.02 |
| A | na | -0.19 | 0 | [-0.23 - -0.14] | 49 | 226.57 | 0 | [-0.41 - 0.04] | 84.79 | 0.02 |
| C | all | 0.01 | 0.23951 | [-0.01 - 0.04] | 109 | 2078.06 | 0 | [-0.11 - 0.14] | 94.42 | 0.06 |
| C | pa | 0.2 | 0 | [0.16 - 0.25] | 51 | 298.95 | 0 | [-0.06 - 0.47] | 89.09 | 0.03 |
| C | na | -0.18 | 0 | [-0.22 - -0.14] | 52 | 338.82 | 0 | [-0.44 - 0.08] | 89.01 | 0.03 |
| E | all | 0.13 | 0 | [0.09 - 0.17] | 120 | 2397.52 | 0 | [-0.17 - 0.43] | 93.52 | 0.05 |
| E | pa | 0.28 | 0 | [0.23 - 0.33] | 59 | 446.25 | 0 | [-0.02 - 0.58] | 87.46 | 0.03 |
| E | na | -0.11 | 0 | [-0.15 - -0.08] | 54 | 154.86 | 0 | [-0.31 - 0.09] | 73.82 | 0.01 |
| N | all | 0.06 | 0.00574 | [0.02 - 0.1] | 138 | 6898.32 | 0 | [-0.28 - 0.4] | 97.77 | 0.13 |
| N | pa | -0.3 | 0 | [-0.33 - -0.26] | 64 | 299.68 | 0 | [-0.54 - -0.06] | 85.34 | 0.02 |
| N | na | 0.38 | 0 | [0.35 - 0.42] | 68 | 724.31 | 0 | [0.15 - 0.62] | 92.16 | 0.03 |
| O | all | 0.06 | 0.00387 | [0.02 - 0.09] | 98 | 927.34 | 0 | [-0.17 - 0.28] | 88.9 | 0.03 |
| O | pa | 0.15 | 0 | [0.09 - 0.2] | 46 | 399.55 | 0 | [-0.18 - 0.48] | 89.18 | 0.03 |
| O | na | -0.04 | 0.04149 | [-0.08 - 0] | 46 | 151.91 | 0 | [-0.25 - 0.17] | 78.89 | 0.01 |
load("../Data/metaSEM.RData")
#### SD ####
pa_sd_fixed <- tssem1(pa_sd_data, pa_sd_n, method="FEM")
sd_model <- "## Factor loadings
Stability =~ A + C + N
Plasticity =~ E + O
## Factor predictions
EmoSD ~ Stability
EmoSD ~ Plasticity
## Factor correlation
Stability ~~ Plasticity"
sd_RAM <- lavaan2RAM(sd_model, obs.variables=c("A","C","E","N","O","EmoSD"),
A.notation="on", S.notation="with")
pa_sd_fixed2 <- tssem2(pa_sd_fixed, RAM=sd_RAM, intervals="z")
summary(pa_sd_fixed2)
##
## Call:
## wls(Cov = coef.tssem1FEM(tssem1.obj), aCov = vcov.tssem1FEM(tssem1.obj),
## n = sum(tssem1.obj$n), RAM = RAM, Amatrix = Amatrix, Smatrix = Smatrix,
## Fmatrix = Fmatrix, diag.constraints = diag.constraints, cor.analysis = tssem1.obj$cor.analysis,
## intervals.type = intervals.type, mx.algebras = mx.algebras,
## mxModel.Args = mxModel.Args, subset.variables = subset.variables,
## model.name = model.name, suppressWarnings = suppressWarnings,
## silent = silent, run = run)
##
## 95% confidence intervals: z statistic approximation
## Coefficients:
## Estimate Std.Error lbound ubound z value
## AonStability 0.473171 0.011321 0.450981 0.495360 41.7946
## ConStability 0.431907 0.011229 0.409898 0.453915 38.4633
## EonPlasticity 0.769474 0.020475 0.729344 0.809604 37.5814
## EmoSDonPlasticity 0.263130 0.023993 0.216104 0.310156 10.9668
## EmoSDonStability -0.221771 0.023282 -0.267402 -0.176140 -9.5256
## NonStability -0.636689 0.011688 -0.659597 -0.613780 -54.4733
## OonPlasticity 0.356359 0.012635 0.331596 0.381122 28.2052
## StabilitywithPlasticity 0.621138 0.019179 0.583547 0.658729 32.3857
## Pr(>|z|)
## AonStability < 0.00000000000000022 ***
## ConStability < 0.00000000000000022 ***
## EonPlasticity < 0.00000000000000022 ***
## EmoSDonPlasticity < 0.00000000000000022 ***
## EmoSDonStability < 0.00000000000000022 ***
## NonStability < 0.00000000000000022 ***
## OonPlasticity < 0.00000000000000022 ***
## StabilitywithPlasticity < 0.00000000000000022 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Goodness-of-fit indices:
## Value
## Sample size 11353.0000
## Chi-square of target model 136.8936
## DF of target model 7.0000
## p value of target model 0.0000
## Number of constraints imposed on "Smatrix" 0.0000
## DF manually adjusted 0.0000
## Chi-square of independence model 3936.1566
## DF of independence model 15.0000
## RMSEA 0.0404
## RMSEA lower 95% CI 0.0347
## RMSEA upper 95% CI 0.0465
## SRMR 0.0238
## TLI 0.9290
## CFI 0.9669
## AIC 122.8936
## BIC 71.5330
## OpenMx status1: 0 ("0" or "1": The optimization is considered fine.
## Other values indicate problems.)
plot(pa_sd_fixed2, color="#E69F00", what = "std")
#### RVI ####
pa_rvi_fixed <- tssem1(pa_rvi_data, pa_rvi_n, method="FEM")
rvi_model <- "## Factor loadings
Stability =~ A + C + N
Plasticity =~ E + O
## Factor predictions
EmoRVI ~ Stability
EmoRVI ~ Plasticity
## Factor correlation
Stability ~~ Plasticity"
rvi_RAM <- lavaan2RAM(rvi_model, obs.variables=c("A","C","E","N","O","EmoRVI"),
A.notation="on", S.notation="with")
pa_rvi_fixed2 <- tssem2(pa_rvi_fixed, RAM=rvi_RAM, intervals="z")
summary(pa_rvi_fixed2)
##
## Call:
## wls(Cov = coef.tssem1FEM(tssem1.obj), aCov = vcov.tssem1FEM(tssem1.obj),
## n = sum(tssem1.obj$n), RAM = RAM, Amatrix = Amatrix, Smatrix = Smatrix,
## Fmatrix = Fmatrix, diag.constraints = diag.constraints, cor.analysis = tssem1.obj$cor.analysis,
## intervals.type = intervals.type, mx.algebras = mx.algebras,
## mxModel.Args = mxModel.Args, subset.variables = subset.variables,
## model.name = model.name, suppressWarnings = suppressWarnings,
## silent = silent, run = run)
##
## 95% confidence intervals: z statistic approximation
## Coefficients:
## Estimate Std.Error lbound ubound z value
## AonStability 0.473235 0.011332 0.451024 0.495446 41.7605
## ConStability 0.431988 0.011240 0.409957 0.454019 38.4319
## EonPlasticity 0.777162 0.021523 0.734978 0.819346 36.1084
## EmoRVIonPlasticity 0.194151 0.022072 0.150890 0.237412 8.7961
## EmoRVIonStability -0.191677 0.021685 -0.234179 -0.149175 -8.8392
## NonStability -0.635725 0.011694 -0.658645 -0.612805 -54.3635
## OonPlasticity 0.352891 0.012912 0.327584 0.378198 27.3306
## StabilitywithPlasticity 0.616449 0.019575 0.578082 0.654816 31.4909
## Pr(>|z|)
## AonStability < 0.00000000000000022 ***
## ConStability < 0.00000000000000022 ***
## EonPlasticity < 0.00000000000000022 ***
## EmoRVIonPlasticity < 0.00000000000000022 ***
## EmoRVIonStability < 0.00000000000000022 ***
## NonStability < 0.00000000000000022 ***
## OonPlasticity < 0.00000000000000022 ***
## StabilitywithPlasticity < 0.00000000000000022 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Goodness-of-fit indices:
## Value
## Sample size 11353.0000
## Chi-square of target model 136.1270
## DF of target model 7.0000
## p value of target model 0.0000
## Number of constraints imposed on "Smatrix" 0.0000
## DF manually adjusted 0.0000
## Chi-square of independence model 3831.0264
## DF of independence model 15.0000
## RMSEA 0.0403
## RMSEA lower 95% CI 0.0346
## RMSEA upper 95% CI 0.0464
## SRMR 0.0239
## TLI 0.9275
## CFI 0.9662
## AIC 122.1270
## BIC 70.7663
## OpenMx status1: 0 ("0" or "1": The optimization is considered fine.
## Other values indicate problems.)
plot(pa_rvi_fixed2, color="#E69F00", what = "std")
#### BCLSM ####
pa_bclsm_fixed <- tssem1(pa_bclsm_data, pa_bclsm_n, method="FEM")
bclsm_model <- "## Factor loadings
Stability =~ A + C + N
Plasticity =~ E + O
## Factor predictions
EmoBCLSM ~ Stability
EmoBCLSM ~ Plasticity
## Factor correlation
Stability ~~ Plasticity"
bclsm_RAM <- lavaan2RAM(bclsm_model, obs.variables=c("A","C","E","N","O","EmoBCLSM"),
A.notation="on", S.notation="with")
pa_bclsm_fixed2 <- tssem2(pa_bclsm_fixed, RAM=bclsm_RAM, intervals="z")
summary(pa_bclsm_fixed2)
##
## Call:
## wls(Cov = coef.tssem1FEM(tssem1.obj), aCov = vcov.tssem1FEM(tssem1.obj),
## n = sum(tssem1.obj$n), RAM = RAM, Amatrix = Amatrix, Smatrix = Smatrix,
## Fmatrix = Fmatrix, diag.constraints = diag.constraints, cor.analysis = tssem1.obj$cor.analysis,
## intervals.type = intervals.type, mx.algebras = mx.algebras,
## mxModel.Args = mxModel.Args, subset.variables = subset.variables,
## model.name = model.name, suppressWarnings = suppressWarnings,
## silent = silent, run = run)
##
## 95% confidence intervals: z statistic approximation
## Coefficients:
## Estimate Std.Error lbound ubound z value
## AonStability 0.473685 0.011307 0.451523 0.495847 41.8916
## ConStability 0.432258 0.011220 0.410267 0.454249 38.5252
## EonPlasticity 0.765933 0.020329 0.726089 0.805777 37.6768
## EmoBCLSMonPlasticity 0.262166 0.024226 0.214684 0.309647 10.8218
## EmoBCLSMonStability -0.231069 0.023420 -0.276971 -0.185167 -9.8664
## NonStability -0.635099 0.011657 -0.657946 -0.612253 -54.4835
## OonPlasticity 0.358656 0.012671 0.333820 0.383491 28.3043
## StabilitywithPlasticity 0.623754 0.019146 0.586229 0.661279 32.5793
## Pr(>|z|)
## AonStability < 0.00000000000000022 ***
## ConStability < 0.00000000000000022 ***
## EonPlasticity < 0.00000000000000022 ***
## EmoBCLSMonPlasticity < 0.00000000000000022 ***
## EmoBCLSMonStability < 0.00000000000000022 ***
## NonStability < 0.00000000000000022 ***
## OonPlasticity < 0.00000000000000022 ***
## StabilitywithPlasticity < 0.00000000000000022 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Goodness-of-fit indices:
## Value
## Sample size 11353.0000
## Chi-square of target model 138.5594
## DF of target model 7.0000
## p value of target model 0.0000
## Number of constraints imposed on "Smatrix" 0.0000
## DF manually adjusted 0.0000
## Chi-square of independence model 3921.4603
## DF of independence model 15.0000
## RMSEA 0.0407
## RMSEA lower 95% CI 0.0349
## RMSEA upper 95% CI 0.0467
## SRMR 0.0241
## TLI 0.9278
## CFI 0.9663
## AIC 124.5594
## BIC 73.1987
## OpenMx status1: 0 ("0" or "1": The optimization is considered fine.
## Other values indicate problems.)
plot(pa_bclsm_fixed2, color="#E69F00", what = "std")
#### SD ####
na_sd_fixed <- tssem1(na_sd_data, na_sd_n, method="FEM")
na_sd_fixed2 <- tssem2(na_sd_fixed, RAM=sd_RAM, intervals="z")
summary(na_sd_fixed2)
##
## Call:
## wls(Cov = coef.tssem1FEM(tssem1.obj), aCov = vcov.tssem1FEM(tssem1.obj),
## n = sum(tssem1.obj$n), RAM = RAM, Amatrix = Amatrix, Smatrix = Smatrix,
## Fmatrix = Fmatrix, diag.constraints = diag.constraints, cor.analysis = tssem1.obj$cor.analysis,
## intervals.type = intervals.type, mx.algebras = mx.algebras,
## mxModel.Args = mxModel.Args, subset.variables = subset.variables,
## model.name = model.name, suppressWarnings = suppressWarnings,
## silent = silent, run = run)
##
## 95% confidence intervals: z statistic approximation
## Coefficients:
## Estimate Std.Error lbound ubound z value
## AonStability -0.430858 0.010118 -0.450690 -0.411026 -42.581
## ConStability -0.406421 0.010124 -0.426264 -0.386578 -40.143
## EonPlasticity 0.790943 0.021938 0.747946 0.833941 36.053
## EmoSDonPlasticity 0.214120 0.021334 0.172307 0.255934 10.037
## EmoSDonStability 0.499876 0.020134 0.460413 0.539338 24.827
## NonStability 0.703086 0.010275 0.682948 0.723224 68.430
## OonPlasticity 0.333950 0.012184 0.310071 0.357829 27.410
## StabilitywithPlasticity -0.590124 0.018905 -0.627177 -0.553070 -31.215
## Pr(>|z|)
## AonStability < 0.00000000000000022 ***
## ConStability < 0.00000000000000022 ***
## EonPlasticity < 0.00000000000000022 ***
## EmoSDonPlasticity < 0.00000000000000022 ***
## EmoSDonStability < 0.00000000000000022 ***
## NonStability < 0.00000000000000022 ***
## OonPlasticity < 0.00000000000000022 ***
## StabilitywithPlasticity < 0.00000000000000022 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Goodness-of-fit indices:
## Value
## Sample size 12846.0000
## Chi-square of target model 254.3705
## DF of target model 7.0000
## p value of target model 0.0000
## Number of constraints imposed on "Smatrix" 0.0000
## DF manually adjusted 0.0000
## Chi-square of independence model 5392.6121
## DF of independence model 15.0000
## RMSEA 0.0525
## RMSEA lower 95% CI 0.0470
## RMSEA upper 95% CI 0.0581
## SRMR 0.0324
## TLI 0.9014
## CFI 0.9540
## AIC 240.3705
## BIC 188.1450
## OpenMx status1: 0 ("0" or "1": The optimization is considered fine.
## Other values indicate problems.)
plot(na_sd_fixed2, color="#710c0c", what = "std")
#### RVI ####
na_rvi_fixed <- tssem1(na_rvi_data, na_rvi_n, method="FEM")
na_rvi_fixed2 <- tssem2(na_rvi_fixed, RAM=rvi_RAM, intervals="z")
summary(na_rvi_fixed2)
##
## Call:
## wls(Cov = coef.tssem1FEM(tssem1.obj), aCov = vcov.tssem1FEM(tssem1.obj),
## n = sum(tssem1.obj$n), RAM = RAM, Amatrix = Amatrix, Smatrix = Smatrix,
## Fmatrix = Fmatrix, diag.constraints = diag.constraints, cor.analysis = tssem1.obj$cor.analysis,
## intervals.type = intervals.type, mx.algebras = mx.algebras,
## mxModel.Args = mxModel.Args, subset.variables = subset.variables,
## model.name = model.name, suppressWarnings = suppressWarnings,
## silent = silent, run = run)
##
## 95% confidence intervals: z statistic approximation
## Coefficients:
## Estimate Std.Error lbound ubound z value
## AonStability 0.468984 0.010697 0.448018 0.489949 43.8432
## ConStability 0.437138 0.010630 0.416303 0.457972 41.1224
## EonPlasticity 0.778905 0.020919 0.737904 0.819905 37.2343
## EmoRVIonPlasticity 0.060348 0.018090 0.024891 0.095804 3.3359
## EmoRVIonStability 0.068833 0.018933 0.031726 0.105941 3.6357
## NonStability -0.626232 0.011002 -0.647795 -0.604668 -56.9190
## OonPlasticity 0.344360 0.012103 0.320640 0.368081 28.4534
## StabilitywithPlasticity 0.621126 0.019003 0.583880 0.658372 32.6849
## Pr(>|z|)
## AonStability < 0.00000000000000022 ***
## ConStability < 0.00000000000000022 ***
## EonPlasticity < 0.00000000000000022 ***
## EmoRVIonPlasticity 0.0008503 ***
## EmoRVIonStability 0.0002773 ***
## NonStability < 0.00000000000000022 ***
## OonPlasticity < 0.00000000000000022 ***
## StabilitywithPlasticity < 0.00000000000000022 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Goodness-of-fit indices:
## Value
## Sample size 12846.0000
## Chi-square of target model 101.0201
## DF of target model 7.0000
## p value of target model 0.0000
## Number of constraints imposed on "Smatrix" 0.0000
## DF manually adjusted 0.0000
## Chi-square of independence model 4047.3962
## DF of independence model 15.0000
## RMSEA 0.0323
## RMSEA lower 95% CI 0.0269
## RMSEA upper 95% CI 0.0381
## SRMR 0.0171
## TLI 0.9500
## CFI 0.9767
## AIC 87.0201
## BIC 34.7946
## OpenMx status1: 0 ("0" or "1": The optimization is considered fine.
## Other values indicate problems.)
plot(na_rvi_fixed2, color="#710c0c", what = "std")
#### BCLSM ####
na_bclsm_fixed <- tssem1(na_bclsm_data, na_bclsm_n, method="FEM")
na_bclsm_fixed2 <- tssem2(na_bclsm_fixed, RAM=bclsm_RAM, intervals="z")
summary(na_bclsm_fixed2)
##
## Call:
## wls(Cov = coef.tssem1FEM(tssem1.obj), aCov = vcov.tssem1FEM(tssem1.obj),
## n = sum(tssem1.obj$n), RAM = RAM, Amatrix = Amatrix, Smatrix = Smatrix,
## Fmatrix = Fmatrix, diag.constraints = diag.constraints, cor.analysis = tssem1.obj$cor.analysis,
## intervals.type = intervals.type, mx.algebras = mx.algebras,
## mxModel.Args = mxModel.Args, subset.variables = subset.variables,
## model.name = model.name, suppressWarnings = suppressWarnings,
## silent = silent, run = run)
##
## 95% confidence intervals: z statistic approximation
## Coefficients:
## Estimate Std.Error lbound ubound z value
## AonStability -0.449572 0.010501 -0.470154 -0.428990 -42.8118
## ConStability -0.419175 0.010472 -0.439700 -0.398650 -40.0276
## EonPlasticity 0.783714 0.021244 0.742076 0.825351 36.8907
## EmoBCLSMonPlasticity 0.189593 0.020655 0.149110 0.230076 9.1791
## EmoBCLSMonStability 0.329433 0.020125 0.289990 0.368877 16.3696
## NonStability 0.670217 0.010905 0.648843 0.691590 61.4586
## OonPlasticity 0.339828 0.012116 0.316081 0.363576 28.0470
## StabilitywithPlasticity -0.606806 0.018907 -0.643864 -0.569748 -32.0935
## Pr(>|z|)
## AonStability < 0.00000000000000022 ***
## ConStability < 0.00000000000000022 ***
## EonPlasticity < 0.00000000000000022 ***
## EmoBCLSMonPlasticity < 0.00000000000000022 ***
## EmoBCLSMonStability < 0.00000000000000022 ***
## NonStability < 0.00000000000000022 ***
## OonPlasticity < 0.00000000000000022 ***
## StabilitywithPlasticity < 0.00000000000000022 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Goodness-of-fit indices:
## Value
## Sample size 12846.0000
## Chi-square of target model 210.2549
## DF of target model 7.0000
## p value of target model 0.0000
## Number of constraints imposed on "Smatrix" 0.0000
## DF manually adjusted 0.0000
## Chi-square of independence model 4643.0578
## DF of independence model 15.0000
## RMSEA 0.0475
## RMSEA lower 95% CI 0.0421
## RMSEA upper 95% CI 0.0532
## SRMR 0.0288
## TLI 0.9059
## CFI 0.9561
## AIC 196.2549
## BIC 144.0294
## OpenMx status1: 0 ("0" or "1": The optimization is considered fine.
## Other values indicate problems.)
plot(na_bclsm_fixed2, color="#710c0c", what = "std")