Import your data

# csv file
myData <- read.csv("../00_data/myData.csv")

Pivoting

long to wide form

wide to long form

myData%>%
    pivot_wider(names_from = film_rating, values_from = release_date)
## # A tibble: 27 × 7
##    number film            run_time G          PG         `N/A` `Not Rated`
##     <int> <chr>              <int> <chr>      <chr>      <chr> <chr>      
##  1      1 Toy Story             81 1995-11-22 <NA>       <NA>  <NA>       
##  2      2 A Bug's Life          95 1998-11-25 <NA>       <NA>  <NA>       
##  3      3 Toy Story 2           92 1999-11-24 <NA>       <NA>  <NA>       
##  4      4 Monsters, Inc.        92 2001-11-02 <NA>       <NA>  <NA>       
##  5      5 Finding Nemo         100 2003-05-30 <NA>       <NA>  <NA>       
##  6      6 The Incredibles      115 <NA>       2004-11-05 <NA>  <NA>       
##  7      7 Cars                 117 2006-06-09 <NA>       <NA>  <NA>       
##  8      8 Ratatouille          111 2007-06-29 <NA>       <NA>  <NA>       
##  9      9 WALL-E                98 2008-06-27 <NA>       <NA>  <NA>       
## 10     10 Up                    96 <NA>       2009-05-29 <NA>  <NA>       
## # ℹ 17 more rows

Separating and Uniting

Separate a column

myData%>%
    separate(col = release_date,into = c("year","month","day"))
##    number                film year month day run_time film_rating
## 1       1           Toy Story 1995    11  22       81           G
## 2       2        A Bug's Life 1998    11  25       95           G
## 3       3         Toy Story 2 1999    11  24       92           G
## 4       4      Monsters, Inc. 2001    11  02       92           G
## 5       5        Finding Nemo 2003    05  30      100           G
## 6       6     The Incredibles 2004    11  05      115          PG
## 7       7                Cars 2006    06  09      117           G
## 8       8         Ratatouille 2007    06  29      111           G
## 9       9              WALL-E 2008    06  27       98           G
## 10     10                  Up 2009    05  29       96          PG
## 11     11         Toy Story 3 2010    06  18      103           G
## 12     12              Cars 2 2011    06  24      106           G
## 13     13               Brave 2012    06  22       93          PG
## 14     14 Monsters University 2013    06  21      104           G
## 15     15          Inside Out 2015    06  19       95          PG
## 16     16   The Good Dinosaur 2015    11  25       93          PG
## 17     17        Finding Dory 2016    06  17       97          PG
## 18     18              Cars 3 2017    06  16      102           G
## 19     19                Coco 2017    11  22      105          PG
## 20     20       Incredibles 2 2018    06  15      118          PG
## 21     21         Toy Story 4 2019    06  21      100           G
## 22     22              Onward 2020    03  06      102          PG
## 23     23                Soul 2020    12  25      100          PG
## 24     24                Luca 2021    06  18      151         N/A
## 25     25         Turning Red 2022    03  11       NA         N/A
## 26     26           Lightyear 2022    06  17       NA         N/A
## 27     27                <NA> 2023    06  16      155   Not Rated

Unite two columns

myData%>% unite(col = “date”,month:day,sep = “/”)



## Missing Values

``` r
myData%>%
    pivot_wider(names_from = film_rating, values_from = release_date)
## # A tibble: 27 × 7
##    number film            run_time G          PG         `N/A` `Not Rated`
##     <int> <chr>              <int> <chr>      <chr>      <chr> <chr>      
##  1      1 Toy Story             81 1995-11-22 <NA>       <NA>  <NA>       
##  2      2 A Bug's Life          95 1998-11-25 <NA>       <NA>  <NA>       
##  3      3 Toy Story 2           92 1999-11-24 <NA>       <NA>  <NA>       
##  4      4 Monsters, Inc.        92 2001-11-02 <NA>       <NA>  <NA>       
##  5      5 Finding Nemo         100 2003-05-30 <NA>       <NA>  <NA>       
##  6      6 The Incredibles      115 <NA>       2004-11-05 <NA>  <NA>       
##  7      7 Cars                 117 2006-06-09 <NA>       <NA>  <NA>       
##  8      8 Ratatouille          111 2007-06-29 <NA>       <NA>  <NA>       
##  9      9 WALL-E                98 2008-06-27 <NA>       <NA>  <NA>       
## 10     10 Up                    96 <NA>       2009-05-29 <NA>  <NA>       
## # ℹ 17 more rows