library(tidyverse)
library(gtsummary)
library(broom)
library(gt)
ncd <- read.csv("ncd.csv")
# Previewdata
head(ncd)
NA
Interpretation of the Dataset (n = 6)
The dataset includes 6 participants with 11 variables describing
their demographic and health characteristics.
Participants’ ages range from 31 to 56 years, and most are male (5
out of 6).
Residency is predominantly urban, with only one participant from a
rural area.
Education levels vary from no formal education to higher education,
indicating a diverse educational background.
Occupations include service, business, farming, unemployment, and
retirement, reflecting mixed socioeconomic profiles.
BMI values range from 18.9 to 30.1, suggesting participants span from
underweight to obese categories.
Systolic blood pressure ranges from 92 to 188 mmHg, and diastolic
pressure from 78 to 116 mmHg, showing both normal and hypertensive
readings.
ncd %>%
tbl_summary()
| Characteristic |
N = 220 |
| participant_id |
111 (56, 166) |
| age |
50 (38, 67) |
| sex |
|
| Female |
118 (54%) |
| Male |
102 (46%) |
| residence |
|
| Rural |
133 (60%) |
| Urban |
87 (40%) |
| education |
|
| Higher |
50 (23%) |
| No formal |
25 (11%) |
| Primary |
66 (30%) |
| Secondary |
79 (36%) |
| occupation |
|
| Business |
46 (21%) |
| Farmer |
61 (28%) |
| Retired |
24 (11%) |
| Service |
66 (30%) |
| Unemployed |
23 (10%) |
| bmi |
25.4 (21.3, 28.3) |
| systolic_bp |
134 (114, 165) |
| diastolic_bp |
91 (76, 107) |
| diabetes |
51 (23%) |
| hypertension |
84 (38%) |
Interpretation:
Interpretation of Overall Participant Characteristics
The dataset includes 2,201 participants with a median ID of 111 (56,
166).
The median age of participants was 50 years (38, 67), indicating a
predominantly middle-aged group.
Females accounted for 54% of the sample, while males made up 46%,
reflecting a fairly balanced gender distribution.
In terms of residence, a majority of participants were from rural
areas (60%), with urban residents comprising 40%.
Educational attainment varied: 36% had secondary education, 30% had
primary education, 23% had higher education, and 11% had no formal
education.
Regarding occupation, the most common categories were service (30%)
and farming (28%), followed by business (21%), retirement (11%), and
unemployment (10%).
The median BMI was 25.4 (21.3, 28.3), suggesting that participants
generally fell within the normal to overweight range.
The median systolic blood pressure was 134 mmHg (114, 165) and
diastolic was 91 mmHg (76, 107), indicating variability across
individuals with a tendency toward elevated levels.
The prevalence of diabetes was 23%, while hypertension was reported
in 38% of participants, suggesting a moderate burden of cardiometabolic
risk factors in the sample.
ncd %>%
tbl_summary(
by = residence)
| Characteristic |
Rural
N = 133 |
Urban
N = 87 |
| participant_id |
108 (64, 156) |
115 (44, 176) |
| age |
51 (38, 69) |
49 (37, 65) |
| sex |
|
|
| Female |
74 (56%) |
44 (51%) |
| Male |
59 (44%) |
43 (49%) |
| education |
|
|
| Higher |
33 (25%) |
17 (20%) |
| No formal |
13 (9.8%) |
12 (14%) |
| Primary |
38 (29%) |
28 (32%) |
| Secondary |
49 (37%) |
30 (34%) |
| occupation |
|
|
| Business |
20 (15%) |
26 (30%) |
| Farmer |
39 (29%) |
22 (25%) |
| Retired |
14 (11%) |
10 (11%) |
| Service |
42 (32%) |
24 (28%) |
| Unemployed |
18 (14%) |
5 (5.7%) |
| bmi |
25.5 (21.1, 28.3) |
24.9 (21.9, 28.4) |
| systolic_bp |
136 (114, 166) |
131 (111, 164) |
| diastolic_bp |
91 (74, 104) |
93 (77, 108) |
| diabetes |
34 (26%) |
17 (20%) |
| hypertension |
55 (41%) |
29 (33%) |
Interpretation:
The dataset comprises 1331 rural and 871 urban participants.
The median participant ID (as an index) was slightly higher in the
urban group (115 [44, 176]) than in the rural group (108 [64, 156]).
The median age was comparable between groups — 51 years (38, 69) in
rural areas and 49 years (37, 65) in urban areas.
Sex distribution was fairly balanced: females represented 56% of the
rural group and 51% of the urban group.
In terms of education, rural participants had a slightly higher
proportion with no formal education (9.8% vs 14%), while both groups had
the largest proportion with secondary education (37% rural, 34%
urban).
Occupational patterns differed slightly: farmers (29%) and service
workers (32%) were more common in rural areas, while business (30%) was
more prevalent among urban participants.
BMI values were similar between groups, with medians of 25.5 (21.1,
28.3) for rural and 24.9 (21.9, 28.4) for urban participants.
Blood pressure levels were marginally higher in rural areas —
systolic BP: 136 (114, 166) vs 131 (111, 164); diastolic BP: 91 (74,
104) vs 93 (77, 108).
The prevalence of diabetes was slightly higher among rural
participants (26% vs 20%), as was hypertension (41% vs 33%).
model <- glm( factor(hypertension) ~ age + sex + bmi + residence + education + occupation + diabetes, data = ncd, family = binomial)
tbl_regression(model)
| Characteristic |
log(OR) |
95% CI |
p-value |
| age |
0.00 |
-0.02, 0.02 |
0.8 |
| sex |
|
|
|
| Female |
— |
— |
|
| Male |
0.30 |
-0.27, 0.87 |
0.3 |
| bmi |
-0.01 |
-0.07, 0.04 |
0.6 |
| residence |
|
|
|
| Rural |
— |
— |
|
| Urban |
-0.41 |
-1.0, 0.18 |
0.2 |
| education |
|
|
|
| Higher |
— |
— |
|
| No formal |
0.52 |
-0.48, 1.5 |
0.3 |
| Primary |
0.05 |
-0.72, 0.84 |
0.9 |
| Secondary |
0.09 |
-0.66, 0.85 |
0.8 |
| occupation |
|
|
|
| Business |
— |
— |
|
| Farmer |
-0.41 |
-1.2, 0.41 |
0.3 |
| Retired |
-0.56 |
-1.7, 0.49 |
0.3 |
| Service |
-0.12 |
-0.91, 0.67 |
0.8 |
| Unemployed |
-0.26 |
-1.4, 0.80 |
0.6 |
| diabetes |
|
|
|
| No |
— |
— |
|
| Yes |
0.06 |
-0.61, 0.71 |
0.9 |
| Abbreviations: CI = Confidence Interval, OR = Odds Ratio |
Interpretation of Logistic Regression Results
The analysis examined associations between selected demographic and
health variables and the outcome of interest (log odds reported as
log(OR)).
Age showed no significant association with the outcome (log(OR) =
0.00; 95% CI: -0.02, 0.02; p = 0.8).
Sex was not a significant predictor, with males having slightly
higher odds compared to females, though not statistically significant
(log(OR) = 0.30; 95% CI: -0.27, 0.87; p = 0.3).
BMI was also not significantly associated with the outcome (log(OR) =
-0.01; 95% CI: -0.07, 0.04; p = 0.6).
Residence showed no significant difference between urban and rural
participants (log(OR) = -0.41; 95% CI: -1.0, 0.18; p = 0.2).
Across education levels, none of the categories (No formal, Primary,
or Secondary) significantly differed from the reference group (Higher
education), with all p-values > 0.05.
Similarly, occupation was not a significant predictor; compared to
business, other categories (farmer, retired, service, and unemployed)
showed non-significant associations.
Diabetes status did not demonstrate a significant effect on the
outcome (log(OR) = 0.06; 95% CI: -0.61, 0.71; p = 0.9).
Overall, none of the included predictors were statistically
significant, indicating that within this sample, the variables assessed
did not show strong or independent associations with the outcome
variable.
LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpgYGB7cn0NCmxpYnJhcnkodGlkeXZlcnNlKQ0KbGlicmFyeShndHN1bW1hcnkpDQpsaWJyYXJ5KGJyb29tKQ0KbGlicmFyeShndCkNCg0KYGBgDQoNCg0KDQpgYGB7cn0NCm5jZCA8LSByZWFkLmNzdigibmNkLmNzdiIpDQoNCiMgUHJldmlld2RhdGENCmhlYWQobmNkKQ0KDQpgYGANCg0KSW50ZXJwcmV0YXRpb24gb2YgdGhlIERhdGFzZXQgKG4gPSA2KQ0KDQpUaGUgZGF0YXNldCBpbmNsdWRlcyA2IHBhcnRpY2lwYW50cyB3aXRoIDExIHZhcmlhYmxlcyBkZXNjcmliaW5nIHRoZWlyIGRlbW9ncmFwaGljIGFuZCBoZWFsdGggY2hhcmFjdGVyaXN0aWNzLg0KDQpQYXJ0aWNpcGFudHPigJkgYWdlcyByYW5nZSBmcm9tIDMxIHRvIDU2IHllYXJzLCBhbmQgbW9zdCBhcmUgbWFsZSAoNSBvdXQgb2YgNikuDQoNClJlc2lkZW5jeSBpcyBwcmVkb21pbmFudGx5IHVyYmFuLCB3aXRoIG9ubHkgb25lIHBhcnRpY2lwYW50IGZyb20gYSBydXJhbCBhcmVhLg0KDQpFZHVjYXRpb24gbGV2ZWxzIHZhcnkgZnJvbSBubyBmb3JtYWwgZWR1Y2F0aW9uIHRvIGhpZ2hlciBlZHVjYXRpb24sIGluZGljYXRpbmcgYSBkaXZlcnNlIGVkdWNhdGlvbmFsIGJhY2tncm91bmQuDQoNCk9jY3VwYXRpb25zIGluY2x1ZGUgc2VydmljZSwgYnVzaW5lc3MsIGZhcm1pbmcsIHVuZW1wbG95bWVudCwgYW5kIHJldGlyZW1lbnQsIHJlZmxlY3RpbmcgbWl4ZWQgc29jaW9lY29ub21pYyBwcm9maWxlcy4NCg0KQk1JIHZhbHVlcyByYW5nZSBmcm9tIDE4LjkgdG8gMzAuMSwgc3VnZ2VzdGluZyBwYXJ0aWNpcGFudHMgc3BhbiBmcm9tIHVuZGVyd2VpZ2h0IHRvIG9iZXNlIGNhdGVnb3JpZXMuDQoNClN5c3RvbGljIGJsb29kIHByZXNzdXJlIHJhbmdlcyBmcm9tIDkyIHRvIDE4OCBtbUhnLCBhbmQgZGlhc3RvbGljIHByZXNzdXJlIGZyb20gNzggdG8gMTE2IG1tSGcsIHNob3dpbmcgYm90aCBub3JtYWwgYW5kIGh5cGVydGVuc2l2ZSByZWFkaW5ncy4NCg0KDQoNCg0KYGBge3J9DQpuY2QgJT4lIA0KICAgdGJsX3N1bW1hcnkoKQ0KYGBgDQoNCkludGVycHJldGF0aW9uOg0KDQpJbnRlcnByZXRhdGlvbiBvZiBPdmVyYWxsIFBhcnRpY2lwYW50IENoYXJhY3RlcmlzdGljcw0KDQpUaGUgZGF0YXNldCBpbmNsdWRlcyAyLDIwMSBwYXJ0aWNpcGFudHMgd2l0aCBhIG1lZGlhbiBJRCBvZiAxMTEgKDU2LCAxNjYpLg0KDQpUaGUgbWVkaWFuIGFnZSBvZiBwYXJ0aWNpcGFudHMgd2FzIDUwIHllYXJzICgzOCwgNjcpLCBpbmRpY2F0aW5nIGEgcHJlZG9taW5hbnRseSBtaWRkbGUtYWdlZCBncm91cC4NCg0KRmVtYWxlcyBhY2NvdW50ZWQgZm9yIDU0JSBvZiB0aGUgc2FtcGxlLCB3aGlsZSBtYWxlcyBtYWRlIHVwIDQ2JSwgcmVmbGVjdGluZyBhIGZhaXJseSBiYWxhbmNlZCBnZW5kZXIgZGlzdHJpYnV0aW9uLg0KDQpJbiB0ZXJtcyBvZiByZXNpZGVuY2UsIGEgbWFqb3JpdHkgb2YgcGFydGljaXBhbnRzIHdlcmUgZnJvbSBydXJhbCBhcmVhcyAoNjAlKSwgd2l0aCB1cmJhbiByZXNpZGVudHMgY29tcHJpc2luZyA0MCUuDQoNCkVkdWNhdGlvbmFsIGF0dGFpbm1lbnQgdmFyaWVkOiAzNiUgaGFkIHNlY29uZGFyeSBlZHVjYXRpb24sIDMwJSBoYWQgcHJpbWFyeSBlZHVjYXRpb24sIDIzJSBoYWQgaGlnaGVyIGVkdWNhdGlvbiwgYW5kIDExJSBoYWQgbm8gZm9ybWFsIGVkdWNhdGlvbi4NCg0KUmVnYXJkaW5nIG9jY3VwYXRpb24sIHRoZSBtb3N0IGNvbW1vbiBjYXRlZ29yaWVzIHdlcmUgc2VydmljZSAoMzAlKSBhbmQgZmFybWluZyAoMjglKSwgZm9sbG93ZWQgYnkgYnVzaW5lc3MgKDIxJSksIHJldGlyZW1lbnQgKDExJSksIGFuZCB1bmVtcGxveW1lbnQgKDEwJSkuDQoNClRoZSBtZWRpYW4gQk1JIHdhcyAyNS40ICgyMS4zLCAyOC4zKSwgc3VnZ2VzdGluZyB0aGF0IHBhcnRpY2lwYW50cyBnZW5lcmFsbHkgZmVsbCB3aXRoaW4gdGhlIG5vcm1hbCB0byBvdmVyd2VpZ2h0IHJhbmdlLg0KDQpUaGUgbWVkaWFuIHN5c3RvbGljIGJsb29kIHByZXNzdXJlIHdhcyAxMzQgbW1IZyAoMTE0LCAxNjUpIGFuZCBkaWFzdG9saWMgd2FzIDkxIG1tSGcgKDc2LCAxMDcpLCBpbmRpY2F0aW5nIHZhcmlhYmlsaXR5IGFjcm9zcyBpbmRpdmlkdWFscyB3aXRoIGEgdGVuZGVuY3kgdG93YXJkIGVsZXZhdGVkIGxldmVscy4NCg0KVGhlIHByZXZhbGVuY2Ugb2YgZGlhYmV0ZXMgd2FzIDIzJSwgd2hpbGUgaHlwZXJ0ZW5zaW9uIHdhcyByZXBvcnRlZCBpbiAzOCUgb2YgcGFydGljaXBhbnRzLCBzdWdnZXN0aW5nIGEgbW9kZXJhdGUgYnVyZGVuIG9mIGNhcmRpb21ldGFib2xpYyByaXNrIGZhY3RvcnMgaW4gdGhlIHNhbXBsZS4NCg0KDQoNCmBgYHtyfQ0KbmNkICU+JQ0KICB0Ymxfc3VtbWFyeSgNCiAgICBieSA9IHJlc2lkZW5jZSkNCmBgYA0KDQpJbnRlcnByZXRhdGlvbjoNCg0KVGhlIGRhdGFzZXQgY29tcHJpc2VzIDEzMzEgcnVyYWwgYW5kIDg3MSB1cmJhbiBwYXJ0aWNpcGFudHMuDQoNClRoZSBtZWRpYW4gcGFydGljaXBhbnQgSUQgKGFzIGFuIGluZGV4KSB3YXMgc2xpZ2h0bHkgaGlnaGVyIGluIHRoZSB1cmJhbiBncm91cCAoMTE1IFs0NCwgMTc2XSkgdGhhbiBpbiB0aGUgcnVyYWwgZ3JvdXAgKDEwOCBbNjQsIDE1Nl0pLg0KDQpUaGUgbWVkaWFuIGFnZSB3YXMgY29tcGFyYWJsZSBiZXR3ZWVuIGdyb3VwcyDigJQgNTEgeWVhcnMgKDM4LCA2OSkgaW4gcnVyYWwgYXJlYXMgYW5kIDQ5IHllYXJzICgzNywgNjUpIGluIHVyYmFuIGFyZWFzLg0KDQpTZXggZGlzdHJpYnV0aW9uIHdhcyBmYWlybHkgYmFsYW5jZWQ6IGZlbWFsZXMgcmVwcmVzZW50ZWQgNTYlIG9mIHRoZSBydXJhbCBncm91cCBhbmQgNTElIG9mIHRoZSB1cmJhbiBncm91cC4NCg0KSW4gdGVybXMgb2YgZWR1Y2F0aW9uLCBydXJhbCBwYXJ0aWNpcGFudHMgaGFkIGEgc2xpZ2h0bHkgaGlnaGVyIHByb3BvcnRpb24gd2l0aCBubyBmb3JtYWwgZWR1Y2F0aW9uICg5LjglIHZzIDE0JSksIHdoaWxlIGJvdGggZ3JvdXBzIGhhZCB0aGUgbGFyZ2VzdCBwcm9wb3J0aW9uIHdpdGggc2Vjb25kYXJ5IGVkdWNhdGlvbiAoMzclIHJ1cmFsLCAzNCUgdXJiYW4pLg0KDQpPY2N1cGF0aW9uYWwgcGF0dGVybnMgZGlmZmVyZWQgc2xpZ2h0bHk6IGZhcm1lcnMgKDI5JSkgYW5kIHNlcnZpY2Ugd29ya2VycyAoMzIlKSB3ZXJlIG1vcmUgY29tbW9uIGluIHJ1cmFsIGFyZWFzLCB3aGlsZSBidXNpbmVzcyAoMzAlKSB3YXMgbW9yZSBwcmV2YWxlbnQgYW1vbmcgdXJiYW4gcGFydGljaXBhbnRzLg0KDQpCTUkgdmFsdWVzIHdlcmUgc2ltaWxhciBiZXR3ZWVuIGdyb3Vwcywgd2l0aCBtZWRpYW5zIG9mIDI1LjUgKDIxLjEsIDI4LjMpIGZvciBydXJhbCBhbmQgMjQuOSAoMjEuOSwgMjguNCkgZm9yIHVyYmFuIHBhcnRpY2lwYW50cy4NCg0KQmxvb2QgcHJlc3N1cmUgbGV2ZWxzIHdlcmUgbWFyZ2luYWxseSBoaWdoZXIgaW4gcnVyYWwgYXJlYXMg4oCUIHN5c3RvbGljIEJQOiAxMzYgKDExNCwgMTY2KSB2cyAxMzEgKDExMSwgMTY0KTsgZGlhc3RvbGljIEJQOiA5MSAoNzQsIDEwNCkgdnMgOTMgKDc3LCAxMDgpLg0KDQpUaGUgcHJldmFsZW5jZSBvZiBkaWFiZXRlcyB3YXMgc2xpZ2h0bHkgaGlnaGVyIGFtb25nIHJ1cmFsIHBhcnRpY2lwYW50cyAoMjYlIHZzIDIwJSksIGFzIHdhcyBoeXBlcnRlbnNpb24gKDQxJSB2cyAzMyUpLg0KDQpgYGB7cn0NCm1vZGVsIDwtIGdsbSggZmFjdG9yKGh5cGVydGVuc2lvbikgfiBhZ2UgKyBzZXggKyBibWkgKyByZXNpZGVuY2UgKyBlZHVjYXRpb24gKyBvY2N1cGF0aW9uICsgZGlhYmV0ZXMsIGRhdGEgPSBuY2QsIGZhbWlseSA9IGJpbm9taWFsKQ0KdGJsX3JlZ3Jlc3Npb24obW9kZWwpDQpgYGANCg0KDQpJbnRlcnByZXRhdGlvbiBvZiBMb2dpc3RpYyBSZWdyZXNzaW9uIFJlc3VsdHMNCg0KVGhlIGFuYWx5c2lzIGV4YW1pbmVkIGFzc29jaWF0aW9ucyBiZXR3ZWVuIHNlbGVjdGVkIGRlbW9ncmFwaGljIGFuZCBoZWFsdGggdmFyaWFibGVzIGFuZCB0aGUgb3V0Y29tZSBvZiBpbnRlcmVzdCAobG9nIG9kZHMgcmVwb3J0ZWQgYXMgbG9nKE9SKSkuDQoNCkFnZSBzaG93ZWQgbm8gc2lnbmlmaWNhbnQgYXNzb2NpYXRpb24gd2l0aCB0aGUgb3V0Y29tZSAobG9nKE9SKSA9IDAuMDA7IDk1JSBDSTogLTAuMDIsIDAuMDI7IHAgPSAwLjgpLg0KDQpTZXggd2FzIG5vdCBhIHNpZ25pZmljYW50IHByZWRpY3Rvciwgd2l0aCBtYWxlcyBoYXZpbmcgc2xpZ2h0bHkgaGlnaGVyIG9kZHMgY29tcGFyZWQgdG8gZmVtYWxlcywgdGhvdWdoIG5vdCBzdGF0aXN0aWNhbGx5IHNpZ25pZmljYW50IChsb2coT1IpID0gMC4zMDsgOTUlIENJOiAtMC4yNywgMC44NzsgcCA9IDAuMykuDQoNCkJNSSB3YXMgYWxzbyBub3Qgc2lnbmlmaWNhbnRseSBhc3NvY2lhdGVkIHdpdGggdGhlIG91dGNvbWUgKGxvZyhPUikgPSAtMC4wMTsgOTUlIENJOiAtMC4wNywgMC4wNDsgcCA9IDAuNikuDQoNClJlc2lkZW5jZSBzaG93ZWQgbm8gc2lnbmlmaWNhbnQgZGlmZmVyZW5jZSBiZXR3ZWVuIHVyYmFuIGFuZCBydXJhbCBwYXJ0aWNpcGFudHMgKGxvZyhPUikgPSAtMC40MTsgOTUlIENJOiAtMS4wLCAwLjE4OyBwID0gMC4yKS4NCg0KQWNyb3NzIGVkdWNhdGlvbiBsZXZlbHMsIG5vbmUgb2YgdGhlIGNhdGVnb3JpZXMgKE5vIGZvcm1hbCwgUHJpbWFyeSwgb3IgU2Vjb25kYXJ5KSBzaWduaWZpY2FudGx5IGRpZmZlcmVkIGZyb20gdGhlIHJlZmVyZW5jZSBncm91cCAoSGlnaGVyIGVkdWNhdGlvbiksIHdpdGggYWxsIHAtdmFsdWVzID4gMC4wNS4NCg0KU2ltaWxhcmx5LCBvY2N1cGF0aW9uIHdhcyBub3QgYSBzaWduaWZpY2FudCBwcmVkaWN0b3I7IGNvbXBhcmVkIHRvIGJ1c2luZXNzLCBvdGhlciBjYXRlZ29yaWVzIChmYXJtZXIsIHJldGlyZWQsIHNlcnZpY2UsIGFuZCB1bmVtcGxveWVkKSBzaG93ZWQgbm9uLXNpZ25pZmljYW50IGFzc29jaWF0aW9ucy4NCg0KRGlhYmV0ZXMgc3RhdHVzIGRpZCBub3QgZGVtb25zdHJhdGUgYSBzaWduaWZpY2FudCBlZmZlY3Qgb24gdGhlIG91dGNvbWUgKGxvZyhPUikgPSAwLjA2OyA5NSUgQ0k6IC0wLjYxLCAwLjcxOyBwID0gMC45KS4NCg0KT3ZlcmFsbCwgbm9uZSBvZiB0aGUgaW5jbHVkZWQgcHJlZGljdG9ycyB3ZXJlIHN0YXRpc3RpY2FsbHkgc2lnbmlmaWNhbnQsIGluZGljYXRpbmcgdGhhdCB3aXRoaW4gdGhpcyBzYW1wbGUsIHRoZSB2YXJpYWJsZXMgYXNzZXNzZWQgZGlkIG5vdCBzaG93IHN0cm9uZyBvciBpbmRlcGVuZGVudCBhc3NvY2lhdGlvbnMgd2l0aCB0aGUgb3V0Y29tZSB2YXJpYWJsZS4NCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg==