Welcome to this short presentation on Linear Regression using R.
We’ll explore how to predict car fuel efficiency (MPG) using engine horsepower and weight.
2025-10-15
Welcome to this short presentation on Linear Regression using R.
We’ll explore how to predict car fuel efficiency (MPG) using engine horsepower and weight.
Simple linear regression models a response \(y\) as a linear function of predictor \(x\):
\[ y = \beta_0 + \beta_1 x + \varepsilon \]
Where:
- \(y\) = dependent variable
- \(x\) = independent variable
- \(\varepsilon\) = random error
We’ll later extend this to multiple linear regression using two predictors.
We’ll use the built-in mtcars dataset, which includes data on 32 car models.
Let’s preview the first few rows:
head(mtcars)
## mpg cyl disp hp drat wt qsec vs am gear carb ## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4 ## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4 ## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1 ## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1 ## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2 ## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
## `geom_smooth()` using formula = 'y ~ x'
data(mtcars) model <- lm(mpg ~ hp + wt, data = mtcars) summary(model)
## ## Call: ## lm(formula = mpg ~ hp + wt, data = mtcars) ## ## Residuals: ## Min 1Q Median 3Q Max ## -3.941 -1.600 -0.182 1.050 5.854 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 37.22727 1.59879 23.285 < 2e-16 *** ## hp -0.03177 0.00903 -3.519 0.00145 ** ## wt -3.87783 0.63273 -6.129 1.12e-06 *** ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 2.593 on 29 degrees of freedom ## Multiple R-squared: 0.8268, Adjusted R-squared: 0.8148 ## F-statistic: 69.21 on 2 and 29 DF, p-value: 9.109e-12
The fitted multiple linear regression equation is:
\[ \widehat{MPG} = 37.23 + -0.0318 \times HP + -3.88 \times Weight \]
Where:
- Intercept: 37.23
- HP coefficient: -0.0318
- Weight coefficient: -3.88
library(ggplot2)
library(plotly)
data(mtcars)
model <- lm(mpg ~ hp + wt, data = mtcars)
ggplot(mtcars, aes(x = hp, y = mpg)) +
geom_point(color = "#8C1D40") +
geom_smooth(method = "lm", se = TRUE, color = "black") +
labs(title = "MPG vs Horsepower",
x = "Horsepower (hp)", y = "MPG")
plot_ly(data = mtcars, x = ~hp, y = ~wt, z = ~mpg,
color = ~mpg, type = "scatter3d",
mode = "markers", marker = list(size = 4)) %>%
layout(scene = list(xaxis = list(title = "HP"),
yaxis = list(title = "Weight"),
zaxis = list(title = "MPG")))
Insights:
Weight and horsepower both negatively impact fuel efficiency.
Weight has a stronger effect on MPG than horsepower.
Limitations:
Linear assumption may not capture non-linear trends.
Dataset is small (32 cars).
Model ignores categorical variables like transmission type.
We used R to:
Fit a multiple linear regression model
Visualize relationships with ggplot and plotly
Express results mathematically with LaTeX
This workflow combines statistics, data visualization, and reproducible reporting, all valuable skills for data science and engineering applications.