Import your data
data = read_csv("https://raw.githubusercontent.com/rfordatascience/tidytuesday/main/data/2025/2025-10-14/food_security.csv")
## Rows: 171232 Columns: 10
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (5): Area, Item, Unit, Flag, Note
## dbl (5): Year_Start, Year_End, Value, CI_Lower, CI_Upper
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
data_small <- data %>%
select(Item, Area, Value) %>%
filter(Area %in% c("Afghanistan"))
Separating and Uniting
data <- read_csv("https://raw.githubusercontent.com/rfordatascience/tidytuesday/main/data/2025/2025-10-14/food_security.csv")
## Rows: 171232 Columns: 10
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (5): Area, Item, Unit, Flag, Note
## dbl (5): Year_Start, Year_End, Value, CI_Lower, CI_Upper
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Separate a column
Unite two columns
Missing Values
data <- read_csv("https://raw.githubusercontent.com/rfordatascience/tidytuesday/main/data/2025/2025-10-14/food_security.csv")
## Rows: 171232 Columns: 10
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (5): Area, Item, Unit, Flag, Note
## dbl (5): Year_Start, Year_End, Value, CI_Lower, CI_Upper
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
data_longer <- data_small %>%
pivot_longer(cols =c("Area"),
names_to = ("Areas"),
values_to = "Places",
values_drop_na = TRUE)