Visualisasi Data

Assignment Week-4


Foto Kelompok 3

1 Pendahuluan

2 Persiapan Data

data_mahasiswa <- data.frame(
  ID_Mahasiswa = c("M001", "M002", "M003", "M004", "M005", 
                   "M006", "M007", "M008", "M009", "M010"),
  Fakultas = c("Ekonomi", "Teknik", "Hukum", "Psikologi", "Teknik",
               "Ekonomi", "Kedokteran", "Hukum", "Teknik", "Psikologi"),
  Nilai_UAS = c(85, 78, 92, 70, 88, 64, 94, 73, 81, 77),
  Waktu_Belajar = c(10, 8, 15, 6, 12, 4, 16, 7, 10, 9),
  Kehadiran = c("95%", "88%", "98%", "82%", "97%", "75%", "99%", "85%", "91%", "89%"),
  IPK = c(3.7, 3.4, 3.9, 2.9, 3.8, 2.6, 4.0, 3.3, 3.5, 3.2),
  Gender = c("L", "P", "L", "P", "L", "P", "L", "L", "L", "P"),
  Semester = c(5, 4, 6, 3, 5, 2, 6, 3, 4, 4)
)

print (data_mahasiswa)
##    ID_Mahasiswa   Fakultas Nilai_UAS Waktu_Belajar Kehadiran IPK Gender
## 1          M001    Ekonomi        85            10       95% 3.7      L
## 2          M002     Teknik        78             8       88% 3.4      P
## 3          M003      Hukum        92            15       98% 3.9      L
## 4          M004  Psikologi        70             6       82% 2.9      P
## 5          M005     Teknik        88            12       97% 3.8      L
## 6          M006    Ekonomi        64             4       75% 2.6      P
## 7          M007 Kedokteran        94            16       99% 4.0      L
## 8          M008      Hukum        73             7       85% 3.3      L
## 9          M009     Teknik        81            10       91% 3.5      L
## 10         M010  Psikologi        77             9       89% 3.2      P
##    Semester
## 1         5
## 2         4
## 3         6
## 4         3
## 5         5
## 6         2
## 7         6
## 8         3
## 9         4
## 10        4

3 Visualisasi Data

3.1 Bar Chat

Definisi

Bar chart digunakan untuk menampilkan dan membandingkan data kategori (kategorikal) dalam bentuk batang tegak atau mendatar. Setiap batang mewakili satu kategori (misalnya Fakultas, Jenis Kelamin, atau Mata Kuliah), dan panjang batang menggambarkan jumlah, rata-rata, atau nilai tertentu dari kategori tersebut.

Aturan Penggunaan

-Gunakan jika data bersifat kategorik atau diskrit. -Sumbu X (horizontal) → kategori. -Sumbu Y (vertikal) → nilai (jumlah, frekuensi, rata-rata, dll). -Hindari terlalu banyak kategori karena grafik bisa jadi sulit dibaca.

kelebihan

-Sangat mudah dipahami oleh semua orang. -Cocok untuk membandingkan nilai antar kategori. -Dapat digunakan dengan berbagai variasi (stacked bar, grouped bar, horizontal bar).

kekurangan

-Tidak cocok untuk data kontinu (angka yang bersambung). -Sulit dibaca jika jumlah kategori terlalu banyak atau label panjang.

# Memuat paket
library(ggplot2)

# Menghitung rata-rata nilai UAS per fakultas
rata_rata_uas <- aggregate(Nilai_UAS ~ Fakultas, data = data_mahasiswa, mean)
print(rata_rata_uas)
##     Fakultas Nilai_UAS
## 1    Ekonomi  74.50000
## 2      Hukum  82.50000
## 3 Kedokteran  94.00000
## 4  Psikologi  73.50000
## 5     Teknik  82.33333
# Membuat grafik bar rata-rata nilai UAS per fakultas
ggplot(rata_rata_uas, aes(x = reorder(Fakultas, -Nilai_UAS), y = Nilai_UAS, fill = Fakultas)) +
  geom_bar(stat = "identity") +
  labs(
    title = "Rata-rata Nilai UAS per Fakultas",
    x = "Fakultas",
    y = "Rata-rata Nilai UAS"
  ) +
  theme_minimal()

3.2 Histogram

# Histogram distribusi Nilai UAS
ggplot(data_mahasiswa, aes(x = Nilai_UAS)) +
geom_histogram(
aes(y = after_stat(density), fill = after_stat(count)),
bins = 6,
color = "white",
show.legend = FALSE
) +
scale_fill_gradient(low = "#56B1F7", high = "#132B43") +
geom_density(alpha = 0.2, fill = "darkblue") +
labs(
title = "Distribusi Nilai UAS Mahasiswa",
subtitle = "Menunjukkan penyebaran nilai ujian akhir per mahasiswa",
x = "Nilai UAS",
y = "Kepadatan (Density)"
)

4

LS0tDQp0aXRsZTogIlZpc3VhbGlzYXNpIERhdGEiDQpzdWJ0aXRsZTogIkFzc2lnbm1lbnQgV2Vlay00Ig0KYXV0aG9yOg0KLSAiS2Vsb21wb2sgMyIgDQotICJOYWlmYWggRWRyaWEgQXJ0YSAoNTIyNTAwNTYpIg0KLSAiRnJpenp5IExpdGhtZW5zeWFoICg1MjI1MDA2MikiDQotICJMdWx1IE5hamxhIFNhbHNhYmlsYSAoNTIyNTAwNjkpIg0KLSAiTmFpbGEgU3lhaHJhbmkgUHV0cmkgKDUyMjUwMDcwKSINCi0gIk5pLiBNZCBBdXJvcmEgU2VrYXJuaW5ncnVtICg1MjI1MDA3MikiDQpkYXRlOiAiYHIgZm9ybWF0KFN5cy5EYXRlKCksICclQiAlZCwgJVknKWAiDQpvdXRwdXQ6DQogIHJtZGZvcm1hdHM6OnJlYWR0aGVkb3duOg0KICAgIHNlbGZfY29udGFpbmVkOiB0cnVlDQogICAgdGh1bWJuYWlsczogdHJ1ZQ0KICAgIGxpZ2h0Ym94OiB0cnVlDQogICAgZ2FsbGVyeTogdHJ1ZQ0KICAgIG51bWJlcl9zZWN0aW9uczogdHJ1ZQ0KICAgIGxpYl9kaXI6IGxpYnMNCiAgICBkZl9wcmludDogInBhZ2VkIg0KICAgIGNvZGVfZm9sZGluZzogInNob3ciDQogICAgY29kZV9kb3dubG9hZDogeWVzDQotLS0NCjxjZW50ZXI+DQo8aW1nIHNyYz0iQzovVXNlcnMvYWNlci9Eb2N1bWVudHMvV2hhdHNBcHAgSW1hZ2UgMjAyNS0xMC0xNiBhdCAxOC40Mi4wNl9mNTRjYjc5Yi5qcGciIHdpZHRoPSIzMDAiPjxicj4NCjxiPkZvdG8gS2Vsb21wb2sgMzwvYj4NCjwvY2VudGVyPg0KDQotLS0NCg0KIyMgUGVuZGFodWx1YW4NCg0KDQoNCg0KIyMgUGVyc2lhcGFuIERhdGENCmBgYHtyfQ0KZGF0YV9tYWhhc2lzd2EgPC0gZGF0YS5mcmFtZSgNCiAgSURfTWFoYXNpc3dhID0gYygiTTAwMSIsICJNMDAyIiwgIk0wMDMiLCAiTTAwNCIsICJNMDA1IiwgDQogICAgICAgICAgICAgICAgICAgIk0wMDYiLCAiTTAwNyIsICJNMDA4IiwgIk0wMDkiLCAiTTAxMCIpLA0KICBGYWt1bHRhcyA9IGMoIkVrb25vbWkiLCAiVGVrbmlrIiwgIkh1a3VtIiwgIlBzaWtvbG9naSIsICJUZWtuaWsiLA0KICAgICAgICAgICAgICAgIkVrb25vbWkiLCAiS2Vkb2t0ZXJhbiIsICJIdWt1bSIsICJUZWtuaWsiLCAiUHNpa29sb2dpIiksDQogIE5pbGFpX1VBUyA9IGMoODUsIDc4LCA5MiwgNzAsIDg4LCA2NCwgOTQsIDczLCA4MSwgNzcpLA0KICBXYWt0dV9CZWxhamFyID0gYygxMCwgOCwgMTUsIDYsIDEyLCA0LCAxNiwgNywgMTAsIDkpLA0KICBLZWhhZGlyYW4gPSBjKCI5NSUiLCAiODglIiwgIjk4JSIsICI4MiUiLCAiOTclIiwgIjc1JSIsICI5OSUiLCAiODUlIiwgIjkxJSIsICI4OSUiKSwNCiAgSVBLID0gYygzLjcsIDMuNCwgMy45LCAyLjksIDMuOCwgMi42LCA0LjAsIDMuMywgMy41LCAzLjIpLA0KICBHZW5kZXIgPSBjKCJMIiwgIlAiLCAiTCIsICJQIiwgIkwiLCAiUCIsICJMIiwgIkwiLCAiTCIsICJQIiksDQogIFNlbWVzdGVyID0gYyg1LCA0LCA2LCAzLCA1LCAyLCA2LCAzLCA0LCA0KQ0KKQ0KDQpwcmludCAoZGF0YV9tYWhhc2lzd2EpDQpgYGANCg0KIyMgVmlzdWFsaXNhc2kgRGF0YQ0KDQojIyMgQmFyIENoYXQNCioqKkRlZmluaXNpKioqDQoNCkJhciBjaGFydCBkaWd1bmFrYW4gdW50dWsgbWVuYW1waWxrYW4gZGFuIG1lbWJhbmRpbmdrYW4gZGF0YSBrYXRlZ29yaSAoa2F0ZWdvcmlrYWwpIGRhbGFtIGJlbnR1ayBiYXRhbmcgdGVnYWsgYXRhdSBtZW5kYXRhci4NClNldGlhcCBiYXRhbmcgbWV3YWtpbGkgc2F0dSBrYXRlZ29yaSAobWlzYWxueWEgRmFrdWx0YXMsIEplbmlzIEtlbGFtaW4sIGF0YXUgTWF0YSBLdWxpYWgpLCBkYW4gcGFuamFuZyBiYXRhbmcgbWVuZ2dhbWJhcmthbiBqdW1sYWgsIHJhdGEtcmF0YSwgYXRhdSBuaWxhaSB0ZXJ0ZW50dSBkYXJpIGthdGVnb3JpIHRlcnNlYnV0Lg0KDQoqKipBdHVyYW4gUGVuZ2d1bmFhbioqKg0KDQotR3VuYWthbiBqaWthIGRhdGEgYmVyc2lmYXQga2F0ZWdvcmlrIGF0YXUgZGlza3JpdC4NCi1TdW1idSBYIChob3Jpem9udGFsKSDihpIga2F0ZWdvcmkuDQotU3VtYnUgWSAodmVydGlrYWwpIOKGkiBuaWxhaSAoanVtbGFoLCBmcmVrdWVuc2ksIHJhdGEtcmF0YSwgZGxsKS4NCi1IaW5kYXJpIHRlcmxhbHUgYmFueWFrIGthdGVnb3JpIGthcmVuYSBncmFmaWsgYmlzYSBqYWRpIHN1bGl0IGRpYmFjYS4NCg0KKioqa2VsZWJpaGFuKioqDQoNCi1TYW5nYXQgbXVkYWggZGlwYWhhbWkgb2xlaCBzZW11YSBvcmFuZy4NCi1Db2NvayB1bnR1ayBtZW1iYW5kaW5na2FuIG5pbGFpIGFudGFyIGthdGVnb3JpLg0KLURhcGF0IGRpZ3VuYWthbiBkZW5nYW4gYmVyYmFnYWkgdmFyaWFzaSAoc3RhY2tlZCBiYXIsIGdyb3VwZWQgYmFyLCBob3Jpem9udGFsIGJhcikuDQoNCioqKmtla3VyYW5nYW4qKioNCg0KLVRpZGFrIGNvY29rIHVudHVrIGRhdGEga29udGludSAoYW5na2EgeWFuZyBiZXJzYW1idW5nKS4NCi1TdWxpdCBkaWJhY2EgamlrYSBqdW1sYWgga2F0ZWdvcmkgdGVybGFsdSBiYW55YWsgYXRhdSBsYWJlbCBwYW5qYW5nLg0KDQpgYGB7cn0NCg0KIyBNZW11YXQgcGFrZXQNCmxpYnJhcnkoZ2dwbG90MikNCg0KIyBNZW5naGl0dW5nIHJhdGEtcmF0YSBuaWxhaSBVQVMgcGVyIGZha3VsdGFzDQpyYXRhX3JhdGFfdWFzIDwtIGFnZ3JlZ2F0ZShOaWxhaV9VQVMgfiBGYWt1bHRhcywgZGF0YSA9IGRhdGFfbWFoYXNpc3dhLCBtZWFuKQ0KcHJpbnQocmF0YV9yYXRhX3VhcykNCg0KIyBNZW1idWF0IGdyYWZpayBiYXIgcmF0YS1yYXRhIG5pbGFpIFVBUyBwZXIgZmFrdWx0YXMNCmdncGxvdChyYXRhX3JhdGFfdWFzLCBhZXMoeCA9IHJlb3JkZXIoRmFrdWx0YXMsIC1OaWxhaV9VQVMpLCB5ID0gTmlsYWlfVUFTLCBmaWxsID0gRmFrdWx0YXMpKSArDQogIGdlb21fYmFyKHN0YXQgPSAiaWRlbnRpdHkiKSArDQogIGxhYnMoDQogICAgdGl0bGUgPSAiUmF0YS1yYXRhIE5pbGFpIFVBUyBwZXIgRmFrdWx0YXMiLA0KICAgIHggPSAiRmFrdWx0YXMiLA0KICAgIHkgPSAiUmF0YS1yYXRhIE5pbGFpIFVBUyINCiAgKSArDQogIHRoZW1lX21pbmltYWwoKQ0KYGBgDQoNCg0KDQojIyMgSGlzdG9ncmFtDQpgYGB7cn0NCg0KIyBIaXN0b2dyYW0gZGlzdHJpYnVzaSBOaWxhaSBVQVMNCmdncGxvdChkYXRhX21haGFzaXN3YSwgYWVzKHggPSBOaWxhaV9VQVMpKSArDQpnZW9tX2hpc3RvZ3JhbSgNCmFlcyh5ID0gYWZ0ZXJfc3RhdChkZW5zaXR5KSwgZmlsbCA9IGFmdGVyX3N0YXQoY291bnQpKSwNCmJpbnMgPSA2LA0KY29sb3IgPSAid2hpdGUiLA0Kc2hvdy5sZWdlbmQgPSBGQUxTRQ0KKSArDQpzY2FsZV9maWxsX2dyYWRpZW50KGxvdyA9ICIjNTZCMUY3IiwgaGlnaCA9ICIjMTMyQjQzIikgKw0KZ2VvbV9kZW5zaXR5KGFscGhhID0gMC4yLCBmaWxsID0gImRhcmtibHVlIikgKw0KbGFicygNCnRpdGxlID0gIkRpc3RyaWJ1c2kgTmlsYWkgVUFTIE1haGFzaXN3YSIsDQpzdWJ0aXRsZSA9ICJNZW51bmp1a2thbiBwZW55ZWJhcmFuIG5pbGFpIHVqaWFuIGFraGlyIHBlciBtYWhhc2lzd2EiLA0KeCA9ICJOaWxhaSBVQVMiLA0KeSA9ICJLZXBhZGF0YW4gKERlbnNpdHkpIg0KKQ0KYGBgDQoNCg0KDQojIyA=