PD Patients only

n=126 DCI identified calciphylaxis patients with available onset date, correct death date, and were on PD before onset date.

dat.pd <- subset(dat, dm == "PD")

Baseline information

##      Variable          Treatment            Control P.Value
## 1         sex   18 / 58 (31.0 %)   17 / 68 (25.0 %)   0.579
## 2        race   36 / 57 (63.2 %)   42 / 68 (61.8 %)   >.999
## 3   ethnicity    6 / 56 (10.7 %)     4 / 68 (5.9 %)   0.514
## 4         age   52.3 + 13.9 (58)   55.0 + 12.9 (68)   0.262
## 5    diabetes   25 / 58 (43.1 %)   34 / 68 (50.0 %)   0.552
## 6         bmi    29.7 + 7.8 (58)    31.5 + 8.8 (68)   0.218
## 7     calcium     8.8 + 1.0 (58)     8.8 + 0.9 (62)   0.944
## 8   phosphate     5.9 + 1.7 (58)     6.5 + 2.2 (62)   0.113
## 9         pth 515.6 + 554.2 (54) 479.0 + 399.3 (57)   0.689
## 10    alkphos  159.9 + 95.7 (58) 175.3 + 122.9 (62)   0.448
## 11    albumin     3.1 + 0.6 (58)     3.2 + 0.7 (62)   0.235
## 12   warfarin    6 / 58 (10.3 %)     2 / 68 (2.9 %)   0.183
## 13 cinacalcet   25 / 58 (43.1 %)   27 / 68 (39.7 %)   0.838
## 14         vd   27 / 58 (46.6 %)   26 / 68 (38.2 %)   0.446

Kaplan Meier Curve: all time + PD

km.pd <- survfit(Surv(len_fu2, death)~trt, data=dat.pd)
plot(km.pd, col=c("blue", "red"))
legend("topright", c("STS", "non-STS"), lty=1, col=c("red", "blue"))

km.pd
## Call: survfit(formula = Surv(len_fu2, death) ~ trt, data = dat.pd)
## 
##        n events median 0.95LCL 0.95UCL
## trt=1 58     31    383     261      NA
## trt=0 68     46    593     184    1418

Kaplan Meier Curve: 1 yr follow up + PD

km.pd.1y <- survfit(Surv(len_fu.1y, death.1y)~trt, data=dat.pd)
plot(km.pd.1y, col=c("blue", "red"))
legend("topright", c("STS", "non-STS"), lty=1, col=c("red", "blue"))

km.pd.1y
## Call: survfit(formula = Surv(len_fu.1y, death.1y) ~ trt, data = dat.pd)
## 
##        n events median 0.95LCL 0.95UCL
## trt=1 58     23     NA     261      NA
## trt=0 68     29     NA     184      NA

Kaplan Meier Curve: 2 yrs follow up + PD

km.pd.2y <- survfit(Surv(len_fu.2y, death.2y)~trt, data=dat.pd)
plot(km.pd.2y, col=c("blue", "red"))
legend("topright", c("STS", "non-STS"), lty=1, col=c("red", "blue"))

km.pd.2y
## Call: survfit(formula = Surv(len_fu.2y, death.2y) ~ trt, data = dat.pd)
## 
##        n events median 0.95LCL 0.95UCL
## trt=1 58     27    383     261      NA
## trt=0 68     35    593     184      NA

HD patient only

n=324 DCI identified calciphylaxis patients with available onset date, correct death date, and were on PD before onset date.

dat.hd <- subset(dat, dm == "HD")

Baseline information

##      Variable           Treatment             Control P.Value
## 1         sex   67 / 193 (34.7 %)   46 / 131 (35.1 %)   >.999
## 2        race  122 / 188 (64.9 %)   75 / 130 (57.7 %)   0.237
## 3   ethnicity   20 / 186 (10.8 %)     3 / 130 (2.3 %)   0.009
## 4         age   60.4 + 11.9 (193)   54.7 + 13.0 (131)   <.001
## 5    diabetes  132 / 193 (68.4 %)   77 / 131 (58.8 %)   0.098
## 6         bmi    32.9 + 8.8 (193)    32.2 + 8.9 (131)    0.49
## 7     calcium     8.8 + 0.8 (177)     8.9 + 1.1 (114)   0.354
## 8   phosphate     6.2 + 2.0 (176)     6.6 + 2.0 (114)   0.067
## 9         pth 518.7 + 461.3 (169) 593.5 + 696.6 (105)   0.286
## 10    alkphos 178.7 + 144.7 (177) 232.1 + 261.4 (113)   0.026
## 11    albumin     3.4 + 0.6 (177)     3.5 + 0.5 (113)   0.815
## 12   warfarin    10 / 193 (5.2 %)     3 / 131 (2.3 %)   0.311
## 13 cinacalcet   85 / 193 (44.0 %)   33 / 131 (25.2 %)   <.001
## 14         vd  108 / 193 (56.0 %)   66 / 131 (50.4 %)   0.382

Kaplan Meier Curve: all time + HD

km.hd <- survfit(Surv(len_fu2, death)~trt, data=dat.hd)
plot(km.hd, col=c("blue", "red"))
legend("topright", c("STS", "non-STS"), lty=1, col=c("red", "blue"))

km.hd
## Call: survfit(formula = Surv(len_fu2, death) ~ trt, data = dat.hd)
## 
##         n events median 0.95LCL 0.95UCL
## trt=1 193    106    512     385     881
## trt=0 131     85    710     446    1163

Kaplan Meier Curve: 1 yr follow up + HD

km.hd.1y <- survfit(Surv(len_fu.1y, death.1y)~trt, data=dat.hd)
plot(km.hd.1y, col=c("blue", "red"))
legend("topright", c("STS", "non-STS"), lty=1, col=c("red", "blue"))

km.hd.1y
## Call: survfit(formula = Surv(len_fu.1y, death.1y) ~ trt, data = dat.hd)
## 
##         n events median 0.95LCL 0.95UCL
## trt=1 193     73     NA      NA      NA
## trt=0 131     45     NA      NA      NA

Kaplan Meier Curve: 2 yrs follow up + HD

km.hd.2y <- survfit(Surv(len_fu.2y, death.2y)~trt, data=dat.hd)
plot(km.hd.2y, col=c("blue", "red"))
legend("topright", c("STS", "non-STS"), lty=1, col=c("red", "blue"))

km.hd.2y
## Call: survfit(formula = Surv(len_fu.2y, death.2y) ~ trt, data = dat.hd)
## 
##         n events median 0.95LCL 0.95UCL
## trt=1 193     90    512     385      NA
## trt=0 131     58    710     446      NA

HD patient only: matched sample

n=268 DCI identified calciphylaxis patients with available onset date, correct death date, and were on PD before onset date; matched by age and ethnicity.

matchit(trt~age+ethnicity, data=na.exclude(dat.hd[,c(1,9,11, 4)]), method="nearest") -> m.out
m.data1 <- match.data(m.out)
dat.hd.m <- subset(dat.hd, patient_id %in% m.data1$patient_id | is.na(ethnicity))

Baseline information

##      Variable           Treatment             Control P.Value
## 1         sex   50 / 137 (36.5 %)   46 / 131 (35.1 %)   0.914
## 2        race   82 / 134 (61.2 %)   75 / 130 (57.7 %)   0.650
## 3   ethnicity     0 / 130 (0.0 %)     3 / 130 (2.3 %)   0.245
## 4         age    56.6 + 9.4 (137)   54.7 + 13.0 (131)   0.161
## 5    diabetes   93 / 137 (67.9 %)   77 / 131 (58.8 %)   0.156
## 6         bmi    33.9 + 9.2 (137)    32.2 + 8.9 (131)   0.125
## 7     calcium     8.8 + 0.8 (126)     8.9 + 1.1 (114)   0.239
## 8   phosphate     6.4 + 2.1 (125)     6.6 + 2.0 (114)   0.343
## 9         pth 500.6 + 382.5 (119) 593.5 + 696.6 (105)   0.210
## 10    alkphos 180.3 + 148.2 (126) 232.1 + 261.4 (113)   0.058
## 11    albumin     3.4 + 0.6 (126)     3.5 + 0.5 (113)   0.239
## 12   warfarin     6 / 137 (4.4 %)     3 / 131 (2.3 %)   0.542
## 13 cinacalcet   58 / 137 (42.3 %)   33 / 131 (25.2 %)   0.005
## 14         vd   72 / 137 (52.6 %)   66 / 131 (50.4 %)   0.815

Kaplan Meier Curve: all time + HD + matched sample

km.hd.m <- survfit(Surv(len_fu2, death)~trt, data=dat.hd.m)
plot(km.hd.m, col=c("blue", "red"))
legend("topright", c("STS", "non-STS"), lty=1, col=c("red", "blue"))

km.hd.m
## Call: survfit(formula = Surv(len_fu2, death) ~ trt, data = dat.hd.m)
## 
##         n events median 0.95LCL 0.95UCL
## trt=1 137     74    512     331    1480
## trt=0 131     85    710     446    1163

Kaplan Meier Curve: 1 yr follow up + HD + matched sample

km.hd.1y.m <- survfit(Surv(len_fu.1y, death.1y)~trt, data=dat.hd.m)
plot(km.hd.1y.m, col=c("blue", "red"))
legend("topright", c("STS", "non-STS"), lty=1, col=c("red", "blue"))

km.hd.1y.m
## Call: survfit(formula = Surv(len_fu.1y, death.1y) ~ trt, data = dat.hd.m)
## 
##         n events median 0.95LCL 0.95UCL
## trt=1 137     54     NA     331      NA
## trt=0 131     45     NA      NA      NA

Kaplan Meier Curve: 2 yrs follow up + HD + matched sample

km.hd.2y.m <- survfit(Surv(len_fu.2y, death.2y)~trt, data=dat.hd.m)
plot(km.hd.2y.m, col=c("blue", "red"))
legend("topright", c("STS", "non-STS"), lty=1, col=c("red", "blue"))

km.hd.2y.m
## Call: survfit(formula = Surv(len_fu.2y, death.2y) ~ trt, data = dat.hd.m)
## 
##         n events median 0.95LCL 0.95UCL
## trt=1 137     63    512     331      NA
## trt=0 131     58    710     446      NA

PD Patients with Caliphylaxis diagnostic date only

n=101 DCI identified calciphylaxis patients with available onset diagnostic date and were on PD before onset date.

dat.calci.pd <- subset(dat, CalciDiag==1 & dm == "PD")

Baseline information

##      Variable          Treatment            Control P.Value
## 1         sex   10 / 33 (30.3 %)   17 / 68 (25.0 %)   0.745
## 2        race   17 / 32 (53.1 %)   42 / 68 (61.8 %)   0.548
## 3   ethnicity     3 / 31 (9.7 %)     4 / 68 (5.9 %)   0.795
## 4         age   53.3 + 14.5 (33)   55.0 + 12.9 (68)    0.57
## 5    diabetes   17 / 33 (51.5 %)   34 / 68 (50.0 %)   >.999
## 6         bmi    30.3 + 8.6 (33)    31.5 + 8.8 (68)    0.51
## 7     calcium     8.7 + 1.1 (33)     8.8 + 0.9 (62)    0.54
## 8   phosphate     6.1 + 1.7 (33)     6.5 + 2.2 (62)   0.435
## 9         pth 587.9 + 653.8 (32) 479.0 + 399.3 (57)   0.331
## 10    alkphos 179.5 + 116.1 (33) 175.3 + 122.9 (62)   0.871
## 11    albumin     3.0 + 0.6 (33)     3.2 + 0.7 (62)   0.105
## 12   warfarin    4 / 33 (12.1 %)     2 / 68 (2.9 %)   0.167
## 13 cinacalcet   13 / 33 (39.4 %)   27 / 68 (39.7 %)   >.999
## 14         vd   15 / 33 (45.5 %)   26 / 68 (38.2 %)   0.633

Kaplan Meier Curve: all time + PD + Caliph diag only

km.calci.pd <- survfit(Surv(len_fu2, death)~trt, data=dat.calci.pd)
plot(km.calci.pd, col=c("blue", "red"))
legend("topright", c("STS", "non-STS"), lty=1, col=c("red", "blue"))

Kaplan Meier Curve: 1 yr follow up + PD + Caliph diag only

km.calci.pd.1y <- survfit(Surv(len_fu.1y, death.1y)~trt, dat=dat.calci.pd)
plot(km.calci.pd.1y, col=c("blue", "red"))
legend("topright", c("STS", "non-STS"), lty=1, col=c("red", "blue"))

km.calci.pd.1y
## Call: survfit(formula = Surv(len_fu.1y, death.1y) ~ trt, data = dat.calci.pd)
## 
##        n events median 0.95LCL 0.95UCL
## trt=1 33     16    277     130      NA
## trt=0 68     29     NA     184      NA

Kaplan Meier Curve: 2 yrs follow up + PD + Caliph diag only

km.calci.pd.2y <- survfit(Surv(len_fu.2y, death.2y)~trt, data=dat.calci.pd)
plot(km.calci.pd.2y, col=c("blue", "red"))
legend("topright", c("STS", "non-STS"), lty=1, col=c("red", "blue"))

km.calci.pd.2y
## Call: survfit(formula = Surv(len_fu.2y, death.2y) ~ trt, data = dat.calci.pd)
## 
##        n events median 0.95LCL 0.95UCL
## trt=1 33     18    277     130      NA
## trt=0 68     35    593     184      NA

HD Patients with Caliphylaxis diagnostic date only

n=239 DCI identified calciphylaxis patients with available onset diagnostic date and never on PD before onset date.

dat.calci.hd <- subset(dat, CalciDiag==1 & dm == "HD")

Baseline information

##      Variable          Treatment             Control P.Value
## 1         sex  40 / 108 (37.0 %)   46 / 131 (35.1 %)   0.863
## 2        race  74 / 106 (69.8 %)   75 / 130 (57.7 %)   0.074
## 3   ethnicity    4 / 104 (3.8 %)     3 / 130 (2.3 %)   0.764
## 4         age  61.1 + 10.9 (108)   54.7 + 13.0 (131)   <.001
## 5    diabetes  80 / 108 (74.1 %)   77 / 131 (58.8 %)   0.019
## 6         bmi   33.2 + 8.2 (108)    32.2 + 8.9 (131)     0.4
## 7     calcium     8.9 + 0.7 (93)     8.9 + 1.1 (114)    0.59
## 8   phosphate     6.5 + 1.9 (92)     6.6 + 2.0 (114)   0.747
## 9         pth 611.2 + 435.9 (88) 593.5 + 696.6 (105)   0.836
## 10    alkphos 163.4 + 137.1 (93) 232.1 + 261.4 (113)   0.023
## 11    albumin     3.4 + 0.6 (93)     3.5 + 0.5 (113)   0.372
## 12   warfarin    7 / 108 (6.5 %)     3 / 131 (2.3 %)   0.198
## 13 cinacalcet  52 / 108 (48.1 %)   33 / 131 (25.2 %)   <.001
## 14         vd  59 / 108 (54.6 %)   66 / 131 (50.4 %)     0.6

Kaplan Meier Curve: all time + HD + Caliph diag only

km.calci.hd <- survfit(Surv(len_fu2, death)~trt, data=dat.calci.hd)
plot(km.calci.hd, col=c("blue", "red"))
legend("topright", c("STS", "non-STS"), lty=1, col=c("red", "blue"))

km.calci.hd
## Call: survfit(formula = Surv(len_fu2, death) ~ trt, data = dat.calci.hd)
## 
##         n events median 0.95LCL 0.95UCL
## trt=1 108     60    434     331    1480
## trt=0 131     85    710     446    1163

Kaplan Meier Curve: 1 yr follow up + HD + Caliph diag only

km.calci.hd.1y <- survfit(Surv(len_fu.1y, death.1y)~trt, dat=dat.calci.hd)
plot(km.calci.hd.1y, col=c("blue", "red"))
legend("topright", c("STS", "non-STS"), lty=1, col=c("red", "blue"))

km.calci.hd.1y
## Call: survfit(formula = Surv(len_fu.1y, death.1y) ~ trt, data = dat.calci.hd)
## 
##         n events median 0.95LCL 0.95UCL
## trt=1 108     42     NA     331      NA
## trt=0 131     45     NA      NA      NA

Kaplan Meier Curve: 2 yr follow up + HD + Caliph diag only

km.calci.hd.2y <- survfit(Surv(len_fu.2y, death.2y)~trt, data=dat.calci.hd)
plot(km.calci.hd.2y, col=c("blue", "red"))
legend("topright", c("STS", "non-STS"), lty=1, col=c("red", "blue"))

km.calci.hd.2y
## Call: survfit(formula = Surv(len_fu.2y, death.2y) ~ trt, data = dat.calci.hd)
## 
##         n events median 0.95LCL 0.95UCL
## trt=1 108     53    434     331      NA
## trt=0 131     58    710     446      NA

HD Patients with Caliphylaxis diagnostic date only : matched sample

n=205 DCI identified calciphylaxis patients with available onset diagnostic date and never on PD before onset date.

dat.calci.hd.m <- subset(dat.hd.m, CalciDiag==1)

Baseline information

##      Variable          Treatment             Control P.Value
## 1         sex   34 / 82 (41.5 %)   46 / 131 (35.1 %)   0.432
## 2        race   56 / 81 (69.1 %)   75 / 130 (57.7 %)   0.128
## 3   ethnicity     0 / 78 (0.0 %)     3 / 130 (2.3 %)   0.453
## 4         age    57.1 + 8.7 (82)   54.7 + 13.0 (131)   0.149
## 5    diabetes   59 / 82 (72.0 %)   77 / 131 (58.8 %)   0.072
## 6         bmi    33.4 + 8.8 (82)    32.2 + 8.9 (131)   0.333
## 7     calcium     8.8 + 0.8 (71)     8.9 + 1.1 (114)   0.367
## 8   phosphate     6.7 + 2.1 (70)     6.6 + 2.0 (114)   0.838
## 9         pth 608.1 + 434.9 (67) 593.5 + 696.6 (105)   0.878
## 10    alkphos 171.4 + 153.0 (71) 232.1 + 261.4 (113)   0.078
## 11    albumin     3.3 + 0.6 (71)     3.5 + 0.5 (113)   0.137
## 12   warfarin     4 / 82 (4.9 %)     3 / 131 (2.3 %)   0.525
## 13 cinacalcet   38 / 82 (46.3 %)   33 / 131 (25.2 %)   0.002
## 14         vd   44 / 82 (53.7 %)   66 / 131 (50.4 %)   0.745

Kaplan Meier Curve: all time + HD + Caliph diag only + matched sample

km.calci.hd.m <- survfit(Surv(len_fu2, death)~trt, data=dat.calci.hd.m)
plot(km.calci.hd.m, col=c("blue", "red"))
legend("topright", c("STS", "non-STS"), lty=1, col=c("red", "blue"))

km.calci.hd.m
## Call: survfit(formula = Surv(len_fu2, death) ~ trt, data = dat.calci.hd.m)
## 
##         n events median 0.95LCL 0.95UCL
## trt=1  82     44    552     332    1518
## trt=0 131     85    710     446    1163

Kaplan Meier Curve: 1 yr follow up + HD + Caliph diag only + matched sample

km.calci.hd.1y.m <- survfit(Surv(len_fu.1y, death.1y)~trt, dat=dat.calci.hd.m)
plot(km.calci.hd.1y.m, col=c("blue", "red"))
legend("topright", c("STS", "non-STS"), lty=1, col=c("red", "blue"))

km.calci.hd.1y.m
## Call: survfit(formula = Surv(len_fu.1y, death.1y) ~ trt, data = dat.calci.hd.m)
## 
##         n events median 0.95LCL 0.95UCL
## trt=1  82     31     NA     332      NA
## trt=0 131     45     NA      NA      NA

Kaplan Meier Curve: 2 yr follow up + HD + Caliph diag only + matched sample

km.calci.hd.2y.m <- survfit(Surv(len_fu.2y, death.2y)~trt, data=dat.calci.hd.m)
plot(km.calci.hd.2y.m, col=c("blue", "red"))
legend("topright", c("STS", "non-STS"), lty=1, col=c("red", "blue"))

km.calci.hd.2y.m
## Call: survfit(formula = Surv(len_fu.2y, death.2y) ~ trt, data = dat.calci.hd.m)
## 
##         n events median 0.95LCL 0.95UCL
## trt=1  82     37    552     332      NA
## trt=0 131     58    710     446      NA

PD Patients with STS date only (group by delayed treatment or not)

n=30 DCI identified patients treated with STS and were on PD before onset date. Choose group cutoff as 14 days, i.e. patients who have there treatment within 14 days of diagnostics as a group.

# delay treatment
dat.sts <- subset(dat, trt==1 & CalciDiag==1)
dat.sts$delay <- as.numeric(difftime(as.Date(dat.sts$STSStartDate, "%m/%d/%Y"), as.Date(dat.sts$CalciDiagDate, "%m/%d/%Y"), units="days"))
dat.sts2 <- subset(dat.sts, delay >= 0)
dat.sts2$group <- dat.sts2$delay <= 14

dat.sts2.pd <- subset(dat.sts2, dm=="PD")

Baseline information

##      Variable            Delayed         Within2wks P.Value
## 1         sex    3 / 12 (25.0 %)    7 / 18 (38.9 %)   0.693
## 2        race    7 / 12 (58.3 %)   10 / 17 (58.8 %)   >.999
## 3   ethnicity     1 / 11 (9.1 %)     1 / 17 (5.9 %)   >.999
## 4         age   54.2 + 11.7 (12)   53.7 + 13.8 (18)   0.832
## 5    diabetes    7 / 12 (58.3 %)    9 / 18 (50.0 %)    0.94
## 6         bmi    31.6 + 9.3 (12)    30.6 + 8.4 (18)   0.866
## 7     calcium     8.3 + 0.8 (12)     8.8 + 1.2 (18)   0.362
## 8   phosphate     6.4 + 1.7 (12)     6.0 + 1.7 (18)   0.458
## 9         pth 774.2 + 984.5 (12) 476.8 + 339.2 (17)   0.352
## 10    alkphos 194.1 + 115.2 (12) 182.0 + 123.8 (18)   0.657
## 11    albumin     3.0 + 0.6 (12)     3.0 + 0.6 (18)   0.832
## 12   warfarin     0 / 12 (0.0 %)    4 / 18 (22.2 %)   0.228
## 13 cinacalcet    7 / 12 (58.3 %)    5 / 18 (27.8 %)   0.196
## 14         vd    7 / 12 (58.3 %)    8 / 18 (44.4 %)   0.709

Kaplan Meier Curve: all time + PD + STS patients

km.delay.pd <- survfit(Surv(len_fu2, death)~group, dat=dat.sts2.pd)
plot(km.delay.pd, col=c("blue", "red"))
legend("topright", c("> 14 days", "<= 14 days"), lty=1, col=c("red", "blue"))

km.delay.pd
## Call: survfit(formula = Surv(len_fu2, death) ~ group, data = dat.sts2.pd)
## 
##              n events median 0.95LCL 0.95UCL
## group=FALSE 12      6    277     113      NA
## group=TRUE  18     12    264     130      NA

Kaplan Meier Curve: 1 yr follow up + PD + STS patients

km.delay.pd.1y <- survfit(Surv(len_fu.1y, death.1y)~group, dat=dat.sts2.pd)
plot(km.delay.pd.1y, col=c("blue", "red"))
legend("topright", c("> 14 days", "<= 14 days"), lty=1, col=c("red", "blue"))

km.delay.pd.1y
## Call: survfit(formula = Surv(len_fu.1y, death.1y) ~ group, data = dat.sts2.pd)
## 
##              n events median 0.95LCL 0.95UCL
## group=FALSE 12      5    277     113      NA
## group=TRUE  18     10    264     130      NA

Kaplan Meier Curve: 2 yrs follow up + PD + STS patients

km.delay.pd.2y <- survfit(Surv(len_fu.2y, death.2y)~group, data=dat.sts2.pd)
plot(km.delay.pd.2y, col=c("blue", "red"))
legend("topright", c("> 14 days", "<= 14 days"), lty=1, col=c("red", "blue"))

km.delay.pd.2y
## Call: survfit(formula = Surv(len_fu.2y, death.2y) ~ group, data = dat.sts2.pd)
## 
##              n events median 0.95LCL 0.95UCL
## group=FALSE 12      6    277     113      NA
## group=TRUE  18     11    264     130      NA

HD Patients with STS date only (group by delayed treatment or not)

n=104 DCI identified patients treated with STS and were on PD before onset date. Choose group cutoff as 14 days, i.e. patients who have there treatment within 14 days of diagnostics as a group.

dat.sts2.hd <- subset(dat.sts2, dm=="HD")

Baseline information

##      Variable            Delayed         Within2wks P.Value
## 1         sex   15 / 38 (39.5 %)   23 / 66 (34.8 %)   0.795
## 2        race   25 / 38 (65.8 %)   47 / 64 (73.4 %)   0.552
## 3   ethnicity     1 / 37 (2.7 %)     3 / 63 (4.8 %)   >.999
## 4         age   57.7 + 10.4 (38)   63.1 + 10.9 (66)   0.015
## 5    diabetes   31 / 38 (81.6 %)   48 / 66 (72.7 %)   0.436
## 6         bmi    34.8 + 9.0 (38)    32.7 + 7.6 (66)   0.211
## 7     calcium     8.9 + 0.8 (29)     8.8 + 0.7 (60)   0.328
## 8   phosphate     6.8 + 2.1 (29)     6.3 + 1.7 (59)   0.437
## 9         pth 609.9 + 432.5 (27) 610.1 + 446.9 (57)   0.867
## 10    alkphos 184.0 + 209.9 (29)  147.4 + 69.2 (60)   0.847
## 11    albumin     3.4 + 0.4 (29)     3.3 + 0.7 (60)   0.944
## 12   warfarin     2 / 38 (5.3 %)     5 / 66 (7.6 %)   0.963
## 13 cinacalcet   16 / 38 (42.1 %)   34 / 66 (51.5 %)   0.471
## 14         vd   22 / 38 (57.9 %)   35 / 66 (53.0 %)   0.783

Kaplan Meier Curve: all time + HD + STS patients

km.delay.hd <- survfit(Surv(len_fu2, death)~group, dat=dat.sts2.hd)
plot(km.delay.hd, col=c("blue", "red"))
legend("topright", c("> 14 days", "<= 14 days"), lty=1, col=c("red", "blue"))

km.delay.hd
## Call: survfit(formula = Surv(len_fu2, death) ~ group, data = dat.sts2.hd)
## 
##              n events median 0.95LCL 0.95UCL
## group=FALSE 38     22    417     321      NA
## group=TRUE  66     36    445     298      NA

Kaplan Meier Curve: 1 yr follow up + HD + STS patients

km.delay.hd.1y <- survfit(Surv(len_fu.1y, death.1y)~group, dat=dat.sts2.hd)
plot(km.delay.hd.1y, col=c("blue", "red"))
legend("topright", c("> 14 days", "<= 14 days"), lty=1, col=c("red", "blue"))

km.delay.hd.1y
## Call: survfit(formula = Surv(len_fu.1y, death.1y) ~ group, data = dat.sts2.hd)
## 
##              n events median 0.95LCL 0.95UCL
## group=FALSE 38     15     NA     321      NA
## group=TRUE  66     26     NA     298      NA

Kaplan Meier Curve: 2 yr follow up + HD + STS patients

km.delay.hd.2y <- survfit(Surv(len_fu.2y, death.2y)~group, data=dat.sts2.hd)
plot(km.delay.hd.2y, col=c("blue", "red"))
legend("topright", c("> 14 days", "<= 14 days"), lty=1, col=c("red", "blue"))

km.delay.hd.2y
## Call: survfit(formula = Surv(len_fu.2y, death.2y) ~ group, data = dat.sts2.hd)
## 
##              n events median 0.95LCL 0.95UCL
## group=FALSE 38     18    417     321      NA
## group=TRUE  66     34    445     298      NA