PD Patients only

n=126 DCI identified calciphylaxis patients with available onset date, correct death date, and were on PD at the time of onset date.

dat.pd <- subset(dat, dm == "PD")

Baseline information

##      Variable          Treatment            Control P.Value
## 1         sex   15 / 38 (39.5 %)   13 / 49 (26.5 %)   0.294
## 2        race   25 / 37 (67.6 %)   33 / 49 (67.3 %)   >.999
## 3   ethnicity    5 / 36 (13.9 %)     3 / 49 (6.1 %)   0.403
## 4         age   54.5 + 14.6 (38)   55.1 + 13.7 (49)   0.855
## 5    diabetes   18 / 38 (47.4 %)   26 / 49 (53.1 %)   0.756
## 6         bmi    29.9 + 7.9 (38)    32.5 + 9.2 (49)   0.178
## 7     calcium     8.5 + 0.9 (38)     8.8 + 0.9 (46)   0.264
## 8   phosphate     6.0 + 1.6 (38)     6.7 + 2.2 (46)   0.087
## 9         pth 481.4 + 327.5 (35) 431.7 + 267.7 (42)   0.466
## 10    alkphos  140.9 + 55.4 (38) 175.7 + 114.1 (46)    0.09
## 11    albumin     2.8 + 0.6 (38)     3.0 + 0.6 (46)   0.145
## 12   warfarin    5 / 38 (13.2 %)     1 / 49 (2.0 %)   0.109
## 13 cinacalcet   13 / 38 (34.2 %)   23 / 49 (46.9 %)   0.329
## 14         vd   18 / 38 (47.4 %)   14 / 49 (28.6 %)   0.114

Kaplan Meier Curve: all time + PD

km.pd <- survfit(Surv(len_fu2, death)~trt, data=dat.pd)
plot(km.pd, col=c("blue", "red"))
legend("topright", c("STS", "non-STS"), lty=1, col=c("red", "blue"))

km.pd
## Call: survfit(formula = Surv(len_fu2, death) ~ trt, data = dat.pd)
## 
##        n events median 0.95LCL 0.95UCL
## trt=1 38     21    277     180      NA
## trt=0 49     36    271      69     993

Kaplan Meier Curve: 1 yr follow up + PD

km.pd.1y <- survfit(Surv(len_fu.1y, death.1y)~trt, data=dat.pd)
plot(km.pd.1y, col=c("blue", "red"))
legend("topright", c("STS", "non-STS"), lty=1, col=c("red", "blue"))

km.pd.1y
## Call: survfit(formula = Surv(len_fu.1y, death.1y) ~ trt, data = dat.pd)
## 
##        n events median 0.95LCL 0.95UCL
## trt=1 38     18    277     180      NA
## trt=0 49     24    271      69      NA

Kaplan Meier Curve: 2 yrs follow up + PD

km.pd.2y <- survfit(Surv(len_fu.2y, death.2y)~trt, data=dat.pd)
plot(km.pd.2y, col=c("blue", "red"))
legend("topright", c("STS", "non-STS"), lty=1, col=c("red", "blue"))

km.pd.2y
## Call: survfit(formula = Surv(len_fu.2y, death.2y) ~ trt, data = dat.pd)
## 
##        n events median 0.95LCL 0.95UCL
## trt=1 38     20    277     180      NA
## trt=0 49     28    271      69      NA

HD patient only

n=324 DCI identified calciphylaxis patients with available onset date, correct death date, and were on PD at the time of onset date.

dat.hd <- subset(dat, dm == "HD")

Baseline information

##      Variable           Treatment             Control P.Value
## 1         sex   70 / 213 (32.9 %)   50 / 150 (33.3 %)   >.999
## 2        race  133 / 208 (63.9 %)   84 / 149 (56.4 %)   0.182
## 3   ethnicity   21 / 206 (10.2 %)     4 / 149 (2.7 %)   0.012
## 4         age   59.3 + 12.4 (213)   54.7 + 12.7 (150)   <.001
## 5    diabetes  139 / 213 (65.3 %)   85 / 150 (56.7 %)   0.121
## 6         bmi    32.6 + 8.8 (213)    31.8 + 8.8 (150)   0.428
## 7     calcium     8.9 + 0.8 (197)     8.9 + 1.1 (130)   0.625
## 8   phosphate     6.1 + 2.0 (196)     6.5 + 2.1 (130)   0.094
## 9         pth 524.7 + 508.4 (188) 595.7 + 686.6 (120)   0.299
## 10    alkphos 180.4 + 143.9 (197) 224.9 + 250.5 (129)   0.043
## 11    albumin     3.5 + 0.6 (197)     3.5 + 0.5 (129)   0.443
## 12   warfarin    11 / 213 (5.2 %)     4 / 150 (2.7 %)   0.363
## 13 cinacalcet   97 / 213 (45.5 %)   37 / 150 (24.7 %)   <.001
## 14         vd  117 / 213 (54.9 %)   78 / 150 (52.0 %)   0.657

Kaplan Meier Curve: all time + HD

km.hd <- survfit(Surv(len_fu2, death)~trt, data=dat.hd)
plot(km.hd, col=c("blue", "red"))
legend("topright", c("STS", "non-STS"), lty=1, col=c("red", "blue"))

km.hd
## Call: survfit(formula = Surv(len_fu2, death) ~ trt, data = dat.hd)
## 
##         n events median 0.95LCL 0.95UCL
## trt=1 213    116    523     385     879
## trt=0 150     95    852     584    1268

Kaplan Meier Curve: 1 yr follow up + HD

km.hd.1y <- survfit(Surv(len_fu.1y, death.1y)~trt, data=dat.hd)
plot(km.hd.1y, col=c("blue", "red"))
legend("topright", c("STS", "non-STS"), lty=1, col=c("red", "blue"))

km.hd.1y
## Call: survfit(formula = Surv(len_fu.1y, death.1y) ~ trt, data = dat.hd)
## 
##         n events median 0.95LCL 0.95UCL
## trt=1 213     78     NA      NA      NA
## trt=0 150     50     NA      NA      NA

Kaplan Meier Curve: 2 yrs follow up + HD

km.hd.2y <- survfit(Surv(len_fu.2y, death.2y)~trt, data=dat.hd)
plot(km.hd.2y, col=c("blue", "red"))
legend("topright", c("STS", "non-STS"), lty=1, col=c("red", "blue"))

km.hd.2y
## Call: survfit(formula = Surv(len_fu.2y, death.2y) ~ trt, data = dat.hd)
## 
##         n events median 0.95LCL 0.95UCL
## trt=1 213     97    523     385      NA
## trt=0 150     65     NA     584      NA

HD patient only: matched sample

n=268 DCI identified calciphylaxis patients with available onset date, correct death date, and were on PD at the time of onset date; matched by age and ethnicity.

matchit(trt~age+ethnicity, data=na.exclude(dat.hd[,c(1,9,11, 4)]), method="nearest") -> m.out
m.data1 <- match.data(m.out)
dat.hd.m <- subset(dat.hd, patient_id %in% m.data1$patient_id | is.na(ethnicity))

Baseline information

##      Variable           Treatment             Control P.Value
## 1         sex   54 / 156 (34.6 %)   50 / 150 (33.3 %)   0.908
## 2        race   91 / 153 (59.5 %)   84 / 149 (56.4 %)   0.668
## 3   ethnicity     0 / 149 (0.0 %)     4 / 149 (2.7 %)   0.131
## 4         age   55.6 + 10.0 (156)   54.7 + 12.7 (150)   0.486
## 5    diabetes   99 / 156 (63.5 %)   85 / 150 (56.7 %)   0.273
## 6         bmi    33.4 + 9.2 (156)    31.8 + 8.8 (150)   0.118
## 7     calcium     8.9 + 0.9 (144)     8.9 + 1.1 (130)   0.557
## 8   phosphate     6.3 + 2.1 (143)     6.5 + 2.1 (130)   0.344
## 9         pth 509.3 + 470.0 (136) 595.7 + 686.6 (120)   0.236
## 10    alkphos 183.4 + 147.5 (144) 224.9 + 250.5 (129)   0.092
## 11    albumin     3.4 + 0.6 (144)     3.5 + 0.5 (129)   0.099
## 12   warfarin     8 / 156 (5.1 %)     4 / 150 (2.7 %)   0.415
## 13 cinacalcet   68 / 156 (43.6 %)   37 / 150 (24.7 %)   <.001
## 14         vd   80 / 156 (51.3 %)   78 / 150 (52.0 %)   0.991

Kaplan Meier Curve: all time + HD + matched sample

km.hd.m <- survfit(Surv(len_fu2, death)~trt, data=dat.hd.m)
plot(km.hd.m, col=c("blue", "red"))
legend("topright", c("STS", "non-STS"), lty=1, col=c("red", "blue"))

km.hd.m
## Call: survfit(formula = Surv(len_fu2, death) ~ trt, data = dat.hd.m)
## 
##         n events median 0.95LCL 0.95UCL
## trt=1 156     83    552     369    1226
## trt=0 150     95    852     584    1268

Kaplan Meier Curve: 1 yr follow up + HD + matched sample

km.hd.1y.m <- survfit(Surv(len_fu.1y, death.1y)~trt, data=dat.hd.m)
plot(km.hd.1y.m, col=c("blue", "red"))
legend("topright", c("STS", "non-STS"), lty=1, col=c("red", "blue"))

km.hd.1y.m
## Call: survfit(formula = Surv(len_fu.1y, death.1y) ~ trt, data = dat.hd.m)
## 
##         n events median 0.95LCL 0.95UCL
## trt=1 156     58     NA      NA      NA
## trt=0 150     50     NA      NA      NA

Kaplan Meier Curve: 2 yrs follow up + HD + matched sample

km.hd.2y.m <- survfit(Surv(len_fu.2y, death.2y)~trt, data=dat.hd.m)
plot(km.hd.2y.m, col=c("blue", "red"))
legend("topright", c("STS", "non-STS"), lty=1, col=c("red", "blue"))

km.hd.2y.m
## Call: survfit(formula = Surv(len_fu.2y, death.2y) ~ trt, data = dat.hd.m)
## 
##         n events median 0.95LCL 0.95UCL
## trt=1 156     69    552     369      NA
## trt=0 150     65     NA     584      NA

PD Patients with Caliphylaxis diagnostic date only

n=101 DCI identified calciphylaxis patients with available onset diagnostic date and were on PD at the time of onset date.

dat.calci.pd <- subset(dat, CalciDiag==1 & dm == "PD")

Baseline information

##      Variable          Treatment            Control P.Value
## 1         sex    7 / 24 (29.2 %)   13 / 49 (26.5 %)   >.999
## 2        race   15 / 23 (65.2 %)   33 / 49 (67.3 %)   >.999
## 3   ethnicity    3 / 22 (13.6 %)     3 / 49 (6.1 %)   0.554
## 4         age   55.0 + 15.9 (24)   55.1 + 13.7 (49)   0.833
## 5    diabetes   15 / 24 (62.5 %)   26 / 49 (53.1 %)   0.608
## 6         bmi    31.2 + 8.6 (24)    32.5 + 9.2 (49)   0.655
## 7     calcium     8.4 + 0.8 (24)     8.8 + 0.9 (46)   0.045
## 8   phosphate     6.2 + 1.5 (24)     6.7 + 2.2 (46)   0.344
## 9         pth 479.7 + 275.3 (23) 431.7 + 267.7 (42)   0.493
## 10    alkphos  147.2 + 59.7 (24) 175.7 + 114.1 (46)   0.621
## 11    albumin     2.8 + 0.5 (24)     3.0 + 0.6 (46)   0.094
## 12   warfarin    3 / 24 (12.5 %)     1 / 49 (2.0 %)   0.195
## 13 cinacalcet    7 / 24 (29.2 %)   23 / 49 (46.9 %)   0.231
## 14         vd   11 / 24 (45.8 %)   14 / 49 (28.6 %)   0.231

Kaplan Meier Curve: all time + PD + Caliph diag only

km.calci.pd <- survfit(Surv(len_fu2, death)~trt, data=dat.calci.pd)
plot(km.calci.pd, col=c("blue", "red"))
legend("topright", c("STS", "non-STS"), lty=1, col=c("red", "blue"))

Kaplan Meier Curve: 1 yr follow up + PD + Caliph diag only

km.calci.pd.1y <- survfit(Surv(len_fu.1y, death.1y)~trt, dat=dat.calci.pd)
plot(km.calci.pd.1y, col=c("blue", "red"))
legend("topright", c("STS", "non-STS"), lty=1, col=c("red", "blue"))

km.calci.pd.1y
## Call: survfit(formula = Surv(len_fu.1y, death.1y) ~ trt, data = dat.calci.pd)
## 
##        n events median 0.95LCL 0.95UCL
## trt=1 24     13    264     114      NA
## trt=0 49     24    271      69      NA

Kaplan Meier Curve: 2 yrs follow up + PD + Caliph diag only

km.calci.pd.2y <- survfit(Surv(len_fu.2y, death.2y)~trt, data=dat.calci.pd)
plot(km.calci.pd.2y, col=c("blue", "red"))
legend("topright", c("STS", "non-STS"), lty=1, col=c("red", "blue"))

km.calci.pd.2y
## Call: survfit(formula = Surv(len_fu.2y, death.2y) ~ trt, data = dat.calci.pd)
## 
##        n events median 0.95LCL 0.95UCL
## trt=1 24     14    264     114      NA
## trt=0 49     28    271      69      NA

HD Patients with Caliphylaxis diagnostic date only

n=239 DCI identified calciphylaxis patients with available onset diagnostic date and never on PD at the time of onset date.

dat.calci.hd <- subset(dat, CalciDiag==1 & dm == "HD")

Baseline information

##      Variable           Treatment             Control P.Value
## 1         sex   43 / 117 (36.8 %)   50 / 150 (33.3 %)   0.651
## 2        race   76 / 115 (66.1 %)   84 / 149 (56.4 %)    0.14
## 3   ethnicity     4 / 113 (3.5 %)     4 / 149 (2.7 %)   0.971
## 4         age   60.1 + 11.2 (117)   54.7 + 12.7 (150)   <.001
## 5    diabetes   82 / 117 (70.1 %)   85 / 150 (56.7 %)   0.034
## 6         bmi    32.8 + 8.4 (117)    31.8 + 8.8 (150)   0.377
## 7     calcium     8.9 + 0.8 (102)     8.9 + 1.1 (130)   0.953
## 8   phosphate     6.5 + 2.0 (101)     6.5 + 2.1 (130)   0.906
## 9         pth  634.7 + 537.0 (97) 595.7 + 686.6 (120)   0.648
## 10    alkphos 172.5 + 143.3 (102) 224.9 + 250.5 (129)   0.061
## 11    albumin     3.4 + 0.6 (102)     3.5 + 0.5 (129)   0.159
## 12   warfarin     8 / 117 (6.8 %)     4 / 150 (2.7 %)   0.182
## 13 cinacalcet   58 / 117 (49.6 %)   37 / 150 (24.7 %)   <.001
## 14         vd   63 / 117 (53.8 %)   78 / 150 (52.0 %)    0.86

Kaplan Meier Curve: all time + HD + Caliph diag only

km.calci.hd <- survfit(Surv(len_fu2, death)~trt, data=dat.calci.hd)
plot(km.calci.hd, col=c("blue", "red"))
legend("topright", c("STS", "non-STS"), lty=1, col=c("red", "blue"))

km.calci.hd
## Call: survfit(formula = Surv(len_fu2, death) ~ trt, data = dat.calci.hd)
## 
##         n events median 0.95LCL 0.95UCL
## trt=1 117     65    434     332    1027
## trt=0 150     95    852     584    1268

Kaplan Meier Curve: 1 yr follow up + HD + Caliph diag only

km.calci.hd.1y <- survfit(Surv(len_fu.1y, death.1y)~trt, dat=dat.calci.hd)
plot(km.calci.hd.1y, col=c("blue", "red"))
legend("topright", c("STS", "non-STS"), lty=1, col=c("red", "blue"))

km.calci.hd.1y
## Call: survfit(formula = Surv(len_fu.1y, death.1y) ~ trt, data = dat.calci.hd)
## 
##         n events median 0.95LCL 0.95UCL
## trt=1 117     45     NA     332      NA
## trt=0 150     50     NA      NA      NA

Kaplan Meier Curve: 2 yr follow up + HD + Caliph diag only

km.calci.hd.2y <- survfit(Surv(len_fu.2y, death.2y)~trt, data=dat.calci.hd)
plot(km.calci.hd.2y, col=c("blue", "red"))
legend("topright", c("STS", "non-STS"), lty=1, col=c("red", "blue"))

km.calci.hd.2y
## Call: survfit(formula = Surv(len_fu.2y, death.2y) ~ trt, data = dat.calci.hd)
## 
##         n events median 0.95LCL 0.95UCL
## trt=1 117     57    434     332      NA
## trt=0 150     65     NA     584      NA

HD Patients with Caliphylaxis diagnostic date only : matched sample

n=205 DCI identified calciphylaxis patients with available onset diagnostic date and never on PD at the time of onset date.

dat.calci.hd.m <- subset(dat.hd.m, CalciDiag==1)

Baseline information

##      Variable          Treatment             Control P.Value
## 1         sex   37 / 92 (40.2 %)   50 / 150 (33.3 %)   0.344
## 2        race   58 / 91 (63.7 %)   84 / 149 (56.4 %)   0.322
## 3   ethnicity     0 / 88 (0.0 %)     4 / 149 (2.7 %)   0.304
## 4         age    56.4 + 9.1 (92)   54.7 + 12.7 (150)   0.258
## 5    diabetes   62 / 92 (67.4 %)   85 / 150 (56.7 %)   0.128
## 6         bmi    33.0 + 9.0 (92)    31.8 + 8.8 (150)   0.303
## 7     calcium     8.9 + 0.9 (80)     8.9 + 1.1 (130)   0.724
## 8   phosphate     6.6 + 2.1 (79)     6.5 + 2.1 (130)   0.756
## 9         pth 638.4 + 561.3 (76) 595.7 + 686.6 (120)    0.65
## 10    alkphos 182.0 + 157.8 (80) 224.9 + 250.5 (129)   0.172
## 11    albumin     3.4 + 0.6 (80)     3.5 + 0.5 (129)   0.058
## 12   warfarin     5 / 92 (5.4 %)     4 / 150 (2.7 %)    0.45
## 13 cinacalcet   44 / 92 (47.8 %)   37 / 150 (24.7 %)   <.001
## 14         vd   48 / 92 (52.2 %)   78 / 150 (52.0 %)   >.999

Kaplan Meier Curve: all time + HD + Caliph diag only + matched sample

km.calci.hd.m <- survfit(Surv(len_fu2, death)~trt, data=dat.calci.hd.m)
plot(km.calci.hd.m, col=c("blue", "red"))
legend("topright", c("STS", "non-STS"), lty=1, col=c("red", "blue"))

km.calci.hd.m
## Call: survfit(formula = Surv(len_fu2, death) ~ trt, data = dat.calci.hd.m)
## 
##         n events median 0.95LCL 0.95UCL
## trt=1  92     49    552     369    1518
## trt=0 150     95    852     584    1268

Kaplan Meier Curve: 1 yr follow up + HD + Caliph diag only + matched sample

km.calci.hd.1y.m <- survfit(Surv(len_fu.1y, death.1y)~trt, dat=dat.calci.hd.m)
plot(km.calci.hd.1y.m, col=c("blue", "red"))
legend("topright", c("STS", "non-STS"), lty=1, col=c("red", "blue"))

km.calci.hd.1y.m
## Call: survfit(formula = Surv(len_fu.1y, death.1y) ~ trt, data = dat.calci.hd.m)
## 
##         n events median 0.95LCL 0.95UCL
## trt=1  92     34     NA      NA      NA
## trt=0 150     50     NA      NA      NA

Kaplan Meier Curve: 2 yr follow up + HD + Caliph diag only + matched sample

km.calci.hd.2y.m <- survfit(Surv(len_fu.2y, death.2y)~trt, data=dat.calci.hd.m)
plot(km.calci.hd.2y.m, col=c("blue", "red"))
legend("topright", c("STS", "non-STS"), lty=1, col=c("red", "blue"))

km.calci.hd.2y.m
## Call: survfit(formula = Surv(len_fu.2y, death.2y) ~ trt, data = dat.calci.hd.m)
## 
##         n events median 0.95LCL 0.95UCL
## trt=1  92     41    552     369      NA
## trt=0 150     65     NA     584      NA

PD Patients with STS date only (group by delayed treatment or not)

n=30 DCI identified patients treated with STS and were on PD at the time of onset date. Choose group cutoff as 14 days, i.e. patients who have there treatment within 14 days of diagnostics as a group.

# delay treatment
dat.sts <- subset(dat, trt==1 & CalciDiag==1)
dat.sts$delay <- as.numeric(difftime(as.Date(dat.sts$STSStartDate, "%m/%d/%Y"), as.Date(dat.sts$CalciDiagDate, "%m/%d/%Y"), units="days"))
dat.sts2 <- subset(dat.sts, delay >= 0)
dat.sts2$group <- dat.sts2$delay <= 14

dat.sts2.pd <- subset(dat.sts2, dm=="PD")

Baseline information

##      Variable            Delayed         Within2wks P.Value
## 1         sex    2 / 10 (20.0 %)    5 / 11 (45.5 %)    0.44
## 2        race    7 / 10 (70.0 %)    8 / 10 (80.0 %)   >.999
## 3   ethnicity     1 / 9 (11.1 %)    1 / 10 (10.0 %)   >.999
## 4         age   53.2 + 11.9 (10)   58.5 + 15.2 (11)   0.291
## 5    diabetes    6 / 10 (60.0 %)    8 / 11 (72.7 %)   0.877
## 6         bmi    32.7 + 9.9 (10)    32.0 + 7.2 (11)   0.833
## 7     calcium     8.2 + 0.7 (10)     8.3 + 0.7 (11)   0.548
## 8   phosphate     6.4 + 1.9 (10)     6.0 + 1.2 (11)   0.725
## 9         pth 512.0 + 306.7 (10) 449.5 + 282.6 (10)    0.65
## 10    alkphos  160.4 + 75.1 (10)  146.4 + 43.3 (11)   0.698
## 11    albumin     2.8 + 0.6 (10)     2.8 + 0.5 (11)   0.944
## 12   warfarin     0 / 10 (0.0 %)    3 / 11 (27.3 %)   0.246
## 13 cinacalcet    5 / 10 (50.0 %)     1 / 11 (9.1 %)   0.112
## 14         vd    6 / 10 (60.0 %)    5 / 11 (45.5 %)   0.819

Kaplan Meier Curve: all time + PD + STS patients

km.delay.pd <- survfit(Surv(len_fu2, death)~group, dat=dat.sts2.pd)
plot(km.delay.pd, col=c("blue", "red"))
legend("topright", c("> 14 days", "<= 14 days"), lty=1, col=c("red", "blue"))

km.delay.pd
## Call: survfit(formula = Surv(len_fu2, death) ~ group, data = dat.sts2.pd)
## 
##              n events median 0.95LCL 0.95UCL
## group=FALSE 10      5    350     113      NA
## group=TRUE  11      8    202      62      NA

Kaplan Meier Curve: 1 yr follow up + PD + STS patients

km.delay.pd.1y <- survfit(Surv(len_fu.1y, death.1y)~group, dat=dat.sts2.pd)
plot(km.delay.pd.1y, col=c("blue", "red"))
legend("topright", c("> 14 days", "<= 14 days"), lty=1, col=c("red", "blue"))

km.delay.pd.1y
## Call: survfit(formula = Surv(len_fu.1y, death.1y) ~ group, data = dat.sts2.pd)
## 
##              n events median 0.95LCL 0.95UCL
## group=FALSE 10      4    277     113      NA
## group=TRUE  11      8    202      62      NA

Kaplan Meier Curve: 2 yrs follow up + PD + STS patients

km.delay.pd.2y <- survfit(Surv(len_fu.2y, death.2y)~group, data=dat.sts2.pd)
plot(km.delay.pd.2y, col=c("blue", "red"))
legend("topright", c("> 14 days", "<= 14 days"), lty=1, col=c("red", "blue"))

km.delay.pd.2y
## Call: survfit(formula = Surv(len_fu.2y, death.2y) ~ group, data = dat.sts2.pd)
## 
##              n events median 0.95LCL 0.95UCL
## group=FALSE 10      5    350     113      NA
## group=TRUE  11      8    202      62      NA

HD Patients with STS date only (group by delayed treatment or not)

n=104 DCI identified patients treated with STS and were on PD at the time of onset date. Choose group cutoff as 14 days, i.e. patients who have there treatment within 14 days of diagnostics as a group.

dat.sts2.hd <- subset(dat.sts2, dm=="HD")

Baseline information

##      Variable            Delayed         Within2wks P.Value
## 1         sex   16 / 40 (40.0 %)   25 / 73 (34.2 %)   0.686
## 2        race   25 / 40 (62.5 %)   49 / 71 (69.0 %)   0.625
## 3   ethnicity     1 / 39 (2.6 %)     3 / 70 (4.3 %)   >.999
## 4         age   57.7 + 10.4 (40)   61.4 + 11.6 (73)   0.096
## 5    diabetes   32 / 40 (80.0 %)   49 / 73 (67.1 %)   0.217
## 6         bmi    34.4 + 9.0 (40)    32.3 + 7.9 (73)   0.209
## 7     calcium     8.9 + 0.8 (31)     8.9 + 0.8 (67)   0.802
## 8   phosphate     6.8 + 2.1 (31)     6.3 + 1.8 (66)   0.212
## 9         pth 711.7 + 722.3 (29) 599.8 + 442.6 (64)    0.66
## 10    alkphos 195.5 + 209.8 (31)  156.9 + 90.5 (67)   0.205
## 11    albumin     3.5 + 0.4 (31)     3.4 + 0.7 (67)   0.379
## 12   warfarin     2 / 40 (5.0 %)     6 / 73 (8.2 %)   0.799
## 13 cinacalcet   18 / 40 (45.0 %)   38 / 73 (52.1 %)   0.603
## 14         vd   23 / 40 (57.5 %)   38 / 73 (52.1 %)    0.72

Kaplan Meier Curve: all time + HD + STS patients

km.delay.hd <- survfit(Surv(len_fu2, death)~group, dat=dat.sts2.hd)
plot(km.delay.hd, col=c("blue", "red"))
legend("topright", c("> 14 days", "<= 14 days"), lty=1, col=c("red", "blue"))

km.delay.hd
## Call: survfit(formula = Surv(len_fu2, death) ~ group, data = dat.sts2.hd)
## 
##              n events median 0.95LCL 0.95UCL
## group=FALSE 40     23    406     321      NA
## group=TRUE  73     40    445     311      NA

Kaplan Meier Curve: 1 yr follow up + HD + STS patients

km.delay.hd.1y <- survfit(Surv(len_fu.1y, death.1y)~group, dat=dat.sts2.hd)
plot(km.delay.hd.1y, col=c("blue", "red"))
legend("topright", c("> 14 days", "<= 14 days"), lty=1, col=c("red", "blue"))

km.delay.hd.1y
## Call: survfit(formula = Surv(len_fu.1y, death.1y) ~ group, data = dat.sts2.hd)
## 
##              n events median 0.95LCL 0.95UCL
## group=FALSE 40     16     NA     321      NA
## group=TRUE  73     28     NA     311      NA

Kaplan Meier Curve: 2 yr follow up + HD + STS patients

km.delay.hd.2y <- survfit(Surv(len_fu.2y, death.2y)~group, data=dat.sts2.hd)
plot(km.delay.hd.2y, col=c("blue", "red"))
legend("topright", c("> 14 days", "<= 14 days"), lty=1, col=c("red", "blue"))

km.delay.hd.2y
## Call: survfit(formula = Surv(len_fu.2y, death.2y) ~ group, data = dat.sts2.hd)
## 
##              n events median 0.95LCL 0.95UCL
## group=FALSE 40     19    406     321      NA
## group=TRUE  73     37    445     311      NA