Do not change anything in the following chunk

You will be working on olympic_gymnasts dataset. Do not change the code below:

olympics <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2021/2021-07-27/olympics.csv')

olympic_gymnasts <- olympics %>% 
  filter(!is.na(age)) %>%             # only keep athletes with known age
  filter(sport == "Gymnastics") %>%   # keep only gymnasts
  mutate(
    medalist = case_when(             # add column for success in medaling
      is.na(medal) ~ FALSE,           # NA values go to FALSE
      !is.na(medal) ~ TRUE            # non-NA values (Gold, Silver, Bronze) go to TRUE
    )
  )

More information about the dataset can be found at

https://github.com/rfordatascience/tidytuesday/blob/master/data/2021/2021-07-27/readme.md

Question 1: Create a subset dataset with the following columns only: name, sex, age, team, year and medalist. Call it df.

df<- olympic_gymnasts|>
  select(name, sex, age, team, year, medalist)
df
## # A tibble: 25,528 × 6
##    name                    sex     age team     year medalist
##    <chr>                   <chr> <dbl> <chr>   <dbl> <lgl>   
##  1 Paavo Johannes Aaltonen M        28 Finland  1948 TRUE    
##  2 Paavo Johannes Aaltonen M        28 Finland  1948 TRUE    
##  3 Paavo Johannes Aaltonen M        28 Finland  1948 FALSE   
##  4 Paavo Johannes Aaltonen M        28 Finland  1948 TRUE    
##  5 Paavo Johannes Aaltonen M        28 Finland  1948 FALSE   
##  6 Paavo Johannes Aaltonen M        28 Finland  1948 FALSE   
##  7 Paavo Johannes Aaltonen M        28 Finland  1948 FALSE   
##  8 Paavo Johannes Aaltonen M        28 Finland  1948 TRUE    
##  9 Paavo Johannes Aaltonen M        32 Finland  1952 FALSE   
## 10 Paavo Johannes Aaltonen M        32 Finland  1952 TRUE    
## # ℹ 25,518 more rows

Question 2: From df create df2 that only have year of 2008 2012, and 2016

df2<- df|> filter(year %in% c(2008,2012,2016)) 

df2
## # A tibble: 2,703 × 6
##    name              sex     age team     year medalist
##    <chr>             <chr> <dbl> <chr>   <dbl> <lgl>   
##  1 Nstor Abad Sanjun M        23 Spain    2016 FALSE   
##  2 Nstor Abad Sanjun M        23 Spain    2016 FALSE   
##  3 Nstor Abad Sanjun M        23 Spain    2016 FALSE   
##  4 Nstor Abad Sanjun M        23 Spain    2016 FALSE   
##  5 Nstor Abad Sanjun M        23 Spain    2016 FALSE   
##  6 Nstor Abad Sanjun M        23 Spain    2016 FALSE   
##  7 Katja Abel        F        25 Germany  2008 FALSE   
##  8 Katja Abel        F        25 Germany  2008 FALSE   
##  9 Katja Abel        F        25 Germany  2008 FALSE   
## 10 Katja Abel        F        25 Germany  2008 FALSE   
## # ℹ 2,693 more rows

Question 3 Group by these three years (2008,2012, and 2016) and summarize the mean of the age in each group.

df2|>group_by(year)|>summarise(mean(age))
## # A tibble: 3 × 2
##    year `mean(age)`
##   <dbl>       <dbl>
## 1  2008        21.6
## 2  2012        21.9
## 3  2016        22.2

Question 4 Use olympic_gymnasts dataset, group by year, and find the mean of the age for each year, call this dataset oly_year. (optional after creating the dataset, find the minimum average age)

oly_year<-olympic_gymnasts|> group_by(year)|>summarise(mean(age))
oly_year
## # A tibble: 29 × 2
##     year `mean(age)`
##    <dbl>       <dbl>
##  1  1896        24.3
##  2  1900        22.2
##  3  1904        25.1
##  4  1906        24.7
##  5  1908        23.2
##  6  1912        24.2
##  7  1920        26.7
##  8  1924        27.6
##  9  1928        25.6
## 10  1932        23.9
## # ℹ 19 more rows
min(oly_year$`mean(age)`)
## [1] 19.86606

Question 5 This question is open ended. Create a question that requires you to use at least two verbs. Create a code that answers your question. Then below the chunk, reflect on your question choice and coding procedure

Using the df dataset, filter the data for gymnasts from Team USA and summarize the average age of those athletes.

# Your R code here
df |>
  filter(team == "United States") |>
  summarise(mean(age))
## # A tibble: 1 × 1
##   `mean(age)`
##         <dbl>
## 1        22.9

Discussion: Enter your discussion of results here. I chose to filter the dataset for gymnasts from the US and then summarize their average age. This question helped me practice using the filter and summarise funtions. It was simple to understand and showed how to get a specific statistic from a large dataset.