gerekli kütüphaneleri aktifleştirme ile başlıyoruz.

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(openintro)
## Loading required package: airports
## Loading required package: cherryblossom
## Loading required package: usdata
library(stats)

palmerpenguins veri setindeki değişkenleri inceleme işlemi için öncelikle palmerpenguins paket yüklemesi yapılır

install.packages("palmerpenguins", repos = "http://cran.us.r-project.org")
## Installing package into 'C:/Users/uslu_/AppData/Local/R/win-library/4.5'
## (as 'lib' is unspecified)
## package 'palmerpenguins' successfully unpacked and MD5 sums checked
## 
## The downloaded binary packages are in
##  C:\Users\uslu_\AppData\Local\Temp\RtmpkX5qED\downloaded_packages

paket yüklemesi ardından; penguins veri setini environmentte gorunmesi icin data fonksiyonu, değskenlerine goz atmak icin glimpse fonksiyonu kullanılır.

data(penguins)
glimpse(penguins)
## Rows: 344
## Columns: 8
## $ species     <fct> Adelie, Adelie, Adelie, Adelie, Adelie, Adelie, Adelie, Ad…
## $ island      <fct> Torgersen, Torgersen, Torgersen, Torgersen, Torgersen, Tor…
## $ bill_len    <dbl> 39.1, 39.5, 40.3, NA, 36.7, 39.3, 38.9, 39.2, 34.1, 42.0, …
## $ bill_dep    <dbl> 18.7, 17.4, 18.0, NA, 19.3, 20.6, 17.8, 19.6, 18.1, 20.2, …
## $ flipper_len <int> 181, 186, 195, NA, 193, 190, 181, 195, 193, 190, 186, 180,…
## $ body_mass   <int> 3750, 3800, 3250, NA, 3450, 3650, 3625, 4675, 3475, 4250, …
## $ sex         <fct> male, female, female, NA, female, male, female, male, NA, …
## $ year        <int> 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007…

penguins veri setinin 8 değiskenli 344 satırdan olustugu gorulmekte. veri setindeki değskenler; penguen turu, ada, gaga uzunluğu, gaga derinlgi, yuzgec uzunlugu, vucut kutlesi, cinsiyet yıl

islemler öncesi veri setindeki degiskenlerin isimleri Turkcelestilmek istenirse;

colnames(penguins)<-   c("tur", "ada", "gaga_uzunlugu",
        "gaga_derinligi",  "yuzgec uzunlugu",
       "vucut_kutle" ,  "cinsiyet" , "yıl")

eksik verileri değisken bazında gormek icin

is.na(penguins)
##          tur   ada gaga_uzunlugu gaga_derinligi yuzgec uzunlugu vucut_kutle
##   [1,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##   [2,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##   [3,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##   [4,] FALSE FALSE          TRUE           TRUE            TRUE        TRUE
##   [5,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##   [6,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##   [7,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##   [8,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##   [9,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [10,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [11,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [12,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [13,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [14,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [15,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [16,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [17,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [18,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [19,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [20,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [21,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [22,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [23,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [24,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [25,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [26,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [27,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [28,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [29,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [30,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [31,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [32,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [33,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [34,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [35,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [36,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [37,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [38,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [39,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [40,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [41,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [42,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [43,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [44,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [45,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [46,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [47,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [48,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [49,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [50,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [51,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [52,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [53,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [54,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [55,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [56,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [57,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [58,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [59,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [60,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [61,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [62,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [63,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [64,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [65,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [66,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [67,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [68,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [69,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [70,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [71,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [72,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [73,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [74,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [75,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [76,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [77,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [78,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [79,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [80,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [81,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [82,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [83,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [84,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [85,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [86,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [87,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [88,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [89,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [90,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [91,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [92,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [93,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [94,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [95,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [96,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [97,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [98,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##  [99,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [100,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [101,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [102,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [103,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [104,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [105,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [106,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [107,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [108,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [109,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [110,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [111,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [112,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [113,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [114,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [115,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [116,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [117,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [118,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [119,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [120,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [121,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [122,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [123,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [124,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [125,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [126,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [127,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [128,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [129,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [130,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [131,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [132,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [133,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [134,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [135,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [136,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [137,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [138,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [139,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [140,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [141,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [142,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [143,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [144,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [145,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [146,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [147,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [148,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [149,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [150,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [151,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [152,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [153,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [154,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [155,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [156,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [157,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [158,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [159,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [160,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [161,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [162,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [163,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [164,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [165,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [166,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [167,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [168,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [169,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [170,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [171,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [172,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [173,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [174,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [175,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [176,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [177,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [178,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [179,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [180,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [181,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [182,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [183,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [184,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [185,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [186,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [187,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [188,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [189,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [190,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [191,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [192,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [193,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [194,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [195,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [196,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [197,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [198,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [199,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [200,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [201,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [202,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [203,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [204,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [205,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [206,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [207,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [208,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [209,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [210,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [211,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [212,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [213,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [214,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [215,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [216,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [217,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [218,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [219,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [220,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [221,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [222,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [223,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [224,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [225,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [226,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [227,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [228,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [229,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [230,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [231,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [232,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [233,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [234,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [235,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [236,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [237,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [238,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [239,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [240,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [241,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [242,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [243,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [244,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [245,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [246,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [247,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [248,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [249,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [250,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [251,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [252,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [253,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [254,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [255,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [256,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [257,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [258,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [259,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [260,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [261,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [262,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [263,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [264,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [265,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [266,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [267,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [268,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [269,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [270,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [271,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [272,] FALSE FALSE          TRUE           TRUE            TRUE        TRUE
## [273,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [274,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [275,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [276,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [277,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [278,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [279,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [280,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [281,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [282,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [283,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [284,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [285,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [286,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [287,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [288,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [289,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [290,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [291,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [292,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [293,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [294,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [295,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [296,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [297,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [298,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [299,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [300,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [301,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [302,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [303,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [304,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [305,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [306,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [307,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [308,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [309,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [310,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [311,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [312,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [313,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [314,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [315,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [316,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [317,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [318,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [319,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [320,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [321,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [322,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [323,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [324,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [325,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [326,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [327,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [328,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [329,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [330,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [331,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [332,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [333,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [334,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [335,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [336,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [337,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [338,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [339,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [340,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [341,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [342,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [343,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
## [344,] FALSE FALSE         FALSE          FALSE           FALSE       FALSE
##        cinsiyet   yıl
##   [1,]    FALSE FALSE
##   [2,]    FALSE FALSE
##   [3,]    FALSE FALSE
##   [4,]     TRUE FALSE
##   [5,]    FALSE FALSE
##   [6,]    FALSE FALSE
##   [7,]    FALSE FALSE
##   [8,]    FALSE FALSE
##   [9,]     TRUE FALSE
##  [10,]     TRUE FALSE
##  [11,]     TRUE FALSE
##  [12,]     TRUE FALSE
##  [13,]    FALSE FALSE
##  [14,]    FALSE FALSE
##  [15,]    FALSE FALSE
##  [16,]    FALSE FALSE
##  [17,]    FALSE FALSE
##  [18,]    FALSE FALSE
##  [19,]    FALSE FALSE
##  [20,]    FALSE FALSE
##  [21,]    FALSE FALSE
##  [22,]    FALSE FALSE
##  [23,]    FALSE FALSE
##  [24,]    FALSE FALSE
##  [25,]    FALSE FALSE
##  [26,]    FALSE FALSE
##  [27,]    FALSE FALSE
##  [28,]    FALSE FALSE
##  [29,]    FALSE FALSE
##  [30,]    FALSE FALSE
##  [31,]    FALSE FALSE
##  [32,]    FALSE FALSE
##  [33,]    FALSE FALSE
##  [34,]    FALSE FALSE
##  [35,]    FALSE FALSE
##  [36,]    FALSE FALSE
##  [37,]    FALSE FALSE
##  [38,]    FALSE FALSE
##  [39,]    FALSE FALSE
##  [40,]    FALSE FALSE
##  [41,]    FALSE FALSE
##  [42,]    FALSE FALSE
##  [43,]    FALSE FALSE
##  [44,]    FALSE FALSE
##  [45,]    FALSE FALSE
##  [46,]    FALSE FALSE
##  [47,]    FALSE FALSE
##  [48,]     TRUE FALSE
##  [49,]    FALSE FALSE
##  [50,]    FALSE FALSE
##  [51,]    FALSE FALSE
##  [52,]    FALSE FALSE
##  [53,]    FALSE FALSE
##  [54,]    FALSE FALSE
##  [55,]    FALSE FALSE
##  [56,]    FALSE FALSE
##  [57,]    FALSE FALSE
##  [58,]    FALSE FALSE
##  [59,]    FALSE FALSE
##  [60,]    FALSE FALSE
##  [61,]    FALSE FALSE
##  [62,]    FALSE FALSE
##  [63,]    FALSE FALSE
##  [64,]    FALSE FALSE
##  [65,]    FALSE FALSE
##  [66,]    FALSE FALSE
##  [67,]    FALSE FALSE
##  [68,]    FALSE FALSE
##  [69,]    FALSE FALSE
##  [70,]    FALSE FALSE
##  [71,]    FALSE FALSE
##  [72,]    FALSE FALSE
##  [73,]    FALSE FALSE
##  [74,]    FALSE FALSE
##  [75,]    FALSE FALSE
##  [76,]    FALSE FALSE
##  [77,]    FALSE FALSE
##  [78,]    FALSE FALSE
##  [79,]    FALSE FALSE
##  [80,]    FALSE FALSE
##  [81,]    FALSE FALSE
##  [82,]    FALSE FALSE
##  [83,]    FALSE FALSE
##  [84,]    FALSE FALSE
##  [85,]    FALSE FALSE
##  [86,]    FALSE FALSE
##  [87,]    FALSE FALSE
##  [88,]    FALSE FALSE
##  [89,]    FALSE FALSE
##  [90,]    FALSE FALSE
##  [91,]    FALSE FALSE
##  [92,]    FALSE FALSE
##  [93,]    FALSE FALSE
##  [94,]    FALSE FALSE
##  [95,]    FALSE FALSE
##  [96,]    FALSE FALSE
##  [97,]    FALSE FALSE
##  [98,]    FALSE FALSE
##  [99,]    FALSE FALSE
## [100,]    FALSE FALSE
## [101,]    FALSE FALSE
## [102,]    FALSE FALSE
## [103,]    FALSE FALSE
## [104,]    FALSE FALSE
## [105,]    FALSE FALSE
## [106,]    FALSE FALSE
## [107,]    FALSE FALSE
## [108,]    FALSE FALSE
## [109,]    FALSE FALSE
## [110,]    FALSE FALSE
## [111,]    FALSE FALSE
## [112,]    FALSE FALSE
## [113,]    FALSE FALSE
## [114,]    FALSE FALSE
## [115,]    FALSE FALSE
## [116,]    FALSE FALSE
## [117,]    FALSE FALSE
## [118,]    FALSE FALSE
## [119,]    FALSE FALSE
## [120,]    FALSE FALSE
## [121,]    FALSE FALSE
## [122,]    FALSE FALSE
## [123,]    FALSE FALSE
## [124,]    FALSE FALSE
## [125,]    FALSE FALSE
## [126,]    FALSE FALSE
## [127,]    FALSE FALSE
## [128,]    FALSE FALSE
## [129,]    FALSE FALSE
## [130,]    FALSE FALSE
## [131,]    FALSE FALSE
## [132,]    FALSE FALSE
## [133,]    FALSE FALSE
## [134,]    FALSE FALSE
## [135,]    FALSE FALSE
## [136,]    FALSE FALSE
## [137,]    FALSE FALSE
## [138,]    FALSE FALSE
## [139,]    FALSE FALSE
## [140,]    FALSE FALSE
## [141,]    FALSE FALSE
## [142,]    FALSE FALSE
## [143,]    FALSE FALSE
## [144,]    FALSE FALSE
## [145,]    FALSE FALSE
## [146,]    FALSE FALSE
## [147,]    FALSE FALSE
## [148,]    FALSE FALSE
## [149,]    FALSE FALSE
## [150,]    FALSE FALSE
## [151,]    FALSE FALSE
## [152,]    FALSE FALSE
## [153,]    FALSE FALSE
## [154,]    FALSE FALSE
## [155,]    FALSE FALSE
## [156,]    FALSE FALSE
## [157,]    FALSE FALSE
## [158,]    FALSE FALSE
## [159,]    FALSE FALSE
## [160,]    FALSE FALSE
## [161,]    FALSE FALSE
## [162,]    FALSE FALSE
## [163,]    FALSE FALSE
## [164,]    FALSE FALSE
## [165,]    FALSE FALSE
## [166,]    FALSE FALSE
## [167,]    FALSE FALSE
## [168,]    FALSE FALSE
## [169,]    FALSE FALSE
## [170,]    FALSE FALSE
## [171,]    FALSE FALSE
## [172,]    FALSE FALSE
## [173,]    FALSE FALSE
## [174,]    FALSE FALSE
## [175,]    FALSE FALSE
## [176,]    FALSE FALSE
## [177,]    FALSE FALSE
## [178,]    FALSE FALSE
## [179,]     TRUE FALSE
## [180,]    FALSE FALSE
## [181,]    FALSE FALSE
## [182,]    FALSE FALSE
## [183,]    FALSE FALSE
## [184,]    FALSE FALSE
## [185,]    FALSE FALSE
## [186,]    FALSE FALSE
## [187,]    FALSE FALSE
## [188,]    FALSE FALSE
## [189,]    FALSE FALSE
## [190,]    FALSE FALSE
## [191,]    FALSE FALSE
## [192,]    FALSE FALSE
## [193,]    FALSE FALSE
## [194,]    FALSE FALSE
## [195,]    FALSE FALSE
## [196,]    FALSE FALSE
## [197,]    FALSE FALSE
## [198,]    FALSE FALSE
## [199,]    FALSE FALSE
## [200,]    FALSE FALSE
## [201,]    FALSE FALSE
## [202,]    FALSE FALSE
## [203,]    FALSE FALSE
## [204,]    FALSE FALSE
## [205,]    FALSE FALSE
## [206,]    FALSE FALSE
## [207,]    FALSE FALSE
## [208,]    FALSE FALSE
## [209,]    FALSE FALSE
## [210,]    FALSE FALSE
## [211,]    FALSE FALSE
## [212,]    FALSE FALSE
## [213,]    FALSE FALSE
## [214,]    FALSE FALSE
## [215,]    FALSE FALSE
## [216,]    FALSE FALSE
## [217,]    FALSE FALSE
## [218,]    FALSE FALSE
## [219,]     TRUE FALSE
## [220,]    FALSE FALSE
## [221,]    FALSE FALSE
## [222,]    FALSE FALSE
## [223,]    FALSE FALSE
## [224,]    FALSE FALSE
## [225,]    FALSE FALSE
## [226,]    FALSE FALSE
## [227,]    FALSE FALSE
## [228,]    FALSE FALSE
## [229,]    FALSE FALSE
## [230,]    FALSE FALSE
## [231,]    FALSE FALSE
## [232,]    FALSE FALSE
## [233,]    FALSE FALSE
## [234,]    FALSE FALSE
## [235,]    FALSE FALSE
## [236,]    FALSE FALSE
## [237,]    FALSE FALSE
## [238,]    FALSE FALSE
## [239,]    FALSE FALSE
## [240,]    FALSE FALSE
## [241,]    FALSE FALSE
## [242,]    FALSE FALSE
## [243,]    FALSE FALSE
## [244,]    FALSE FALSE
## [245,]    FALSE FALSE
## [246,]    FALSE FALSE
## [247,]    FALSE FALSE
## [248,]    FALSE FALSE
## [249,]    FALSE FALSE
## [250,]    FALSE FALSE
## [251,]    FALSE FALSE
## [252,]    FALSE FALSE
## [253,]    FALSE FALSE
## [254,]    FALSE FALSE
## [255,]    FALSE FALSE
## [256,]    FALSE FALSE
## [257,]     TRUE FALSE
## [258,]    FALSE FALSE
## [259,]    FALSE FALSE
## [260,]    FALSE FALSE
## [261,]    FALSE FALSE
## [262,]    FALSE FALSE
## [263,]    FALSE FALSE
## [264,]    FALSE FALSE
## [265,]    FALSE FALSE
## [266,]    FALSE FALSE
## [267,]    FALSE FALSE
## [268,]    FALSE FALSE
## [269,]     TRUE FALSE
## [270,]    FALSE FALSE
## [271,]    FALSE FALSE
## [272,]     TRUE FALSE
## [273,]    FALSE FALSE
## [274,]    FALSE FALSE
## [275,]    FALSE FALSE
## [276,]    FALSE FALSE
## [277,]    FALSE FALSE
## [278,]    FALSE FALSE
## [279,]    FALSE FALSE
## [280,]    FALSE FALSE
## [281,]    FALSE FALSE
## [282,]    FALSE FALSE
## [283,]    FALSE FALSE
## [284,]    FALSE FALSE
## [285,]    FALSE FALSE
## [286,]    FALSE FALSE
## [287,]    FALSE FALSE
## [288,]    FALSE FALSE
## [289,]    FALSE FALSE
## [290,]    FALSE FALSE
## [291,]    FALSE FALSE
## [292,]    FALSE FALSE
## [293,]    FALSE FALSE
## [294,]    FALSE FALSE
## [295,]    FALSE FALSE
## [296,]    FALSE FALSE
## [297,]    FALSE FALSE
## [298,]    FALSE FALSE
## [299,]    FALSE FALSE
## [300,]    FALSE FALSE
## [301,]    FALSE FALSE
## [302,]    FALSE FALSE
## [303,]    FALSE FALSE
## [304,]    FALSE FALSE
## [305,]    FALSE FALSE
## [306,]    FALSE FALSE
## [307,]    FALSE FALSE
## [308,]    FALSE FALSE
## [309,]    FALSE FALSE
## [310,]    FALSE FALSE
## [311,]    FALSE FALSE
## [312,]    FALSE FALSE
## [313,]    FALSE FALSE
## [314,]    FALSE FALSE
## [315,]    FALSE FALSE
## [316,]    FALSE FALSE
## [317,]    FALSE FALSE
## [318,]    FALSE FALSE
## [319,]    FALSE FALSE
## [320,]    FALSE FALSE
## [321,]    FALSE FALSE
## [322,]    FALSE FALSE
## [323,]    FALSE FALSE
## [324,]    FALSE FALSE
## [325,]    FALSE FALSE
## [326,]    FALSE FALSE
## [327,]    FALSE FALSE
## [328,]    FALSE FALSE
## [329,]    FALSE FALSE
## [330,]    FALSE FALSE
## [331,]    FALSE FALSE
## [332,]    FALSE FALSE
## [333,]    FALSE FALSE
## [334,]    FALSE FALSE
## [335,]    FALSE FALSE
## [336,]    FALSE FALSE
## [337,]    FALSE FALSE
## [338,]    FALSE FALSE
## [339,]    FALSE FALSE
## [340,]    FALSE FALSE
## [341,]    FALSE FALSE
## [342,]    FALSE FALSE
## [343,]    FALSE FALSE
## [344,]    FALSE FALSE

eksik veri olan değişkenler; gaga_uzunlugu, gaga_derinligi, yuzgec uzunlugu, vucut_kutle, cinsiyet

Uzun veri setinde eksik veri degisken ve sayılarını tek tek incelemek yerine daha ozet olarak gormek icin; Eksik verileri değişken bazında görmek için sum fonksiyonu kullanılır.

summary(penguins)
##         tur             ada      gaga_uzunlugu   gaga_derinligi 
##  Adelie   :152   Biscoe   :168   Min.   :32.10   Min.   :13.10  
##  Chinstrap: 68   Dream    :124   1st Qu.:39.23   1st Qu.:15.60  
##  Gentoo   :124   Torgersen: 52   Median :44.45   Median :17.30  
##                                  Mean   :43.92   Mean   :17.15  
##                                  3rd Qu.:48.50   3rd Qu.:18.70  
##                                  Max.   :59.60   Max.   :21.50  
##                                  NA's   :2       NA's   :2      
##  yuzgec uzunlugu  vucut_kutle     cinsiyet        yıl      
##  Min.   :172.0   Min.   :2700   female:165   Min.   :2007  
##  1st Qu.:190.0   1st Qu.:3550   male  :168   1st Qu.:2007  
##  Median :197.0   Median :4050   NA's  : 11   Median :2008  
##  Mean   :200.9   Mean   :4202                Mean   :2008  
##  3rd Qu.:213.0   3rd Qu.:4750                3rd Qu.:2009  
##  Max.   :231.0   Max.   :6300                Max.   :2009  
##  NA's   :2       NA's   :2

sum fonksiyonu çıktılarına göre; gaga uzunluğu değiskeninde 2, gaga_derinligi değiskeninde 2, yuzgec uzunlugu değiskeninde 2, vucut_kutle değiskeninde 2, cinsiyet değiskeninde 11, eksik veri olduğu gorulmekte.

eksik verinin olduğu veri seti boyutları: 344* 8

eksik verileri silme icin

(na.omit(penguins))
##           tur       ada gaga_uzunlugu gaga_derinligi yuzgec uzunlugu
## 1      Adelie Torgersen          39.1           18.7             181
## 2      Adelie Torgersen          39.5           17.4             186
## 3      Adelie Torgersen          40.3           18.0             195
## 5      Adelie Torgersen          36.7           19.3             193
## 6      Adelie Torgersen          39.3           20.6             190
## 7      Adelie Torgersen          38.9           17.8             181
## 8      Adelie Torgersen          39.2           19.6             195
## 13     Adelie Torgersen          41.1           17.6             182
## 14     Adelie Torgersen          38.6           21.2             191
## 15     Adelie Torgersen          34.6           21.1             198
## 16     Adelie Torgersen          36.6           17.8             185
## 17     Adelie Torgersen          38.7           19.0             195
## 18     Adelie Torgersen          42.5           20.7             197
## 19     Adelie Torgersen          34.4           18.4             184
## 20     Adelie Torgersen          46.0           21.5             194
## 21     Adelie    Biscoe          37.8           18.3             174
## 22     Adelie    Biscoe          37.7           18.7             180
## 23     Adelie    Biscoe          35.9           19.2             189
## 24     Adelie    Biscoe          38.2           18.1             185
## 25     Adelie    Biscoe          38.8           17.2             180
## 26     Adelie    Biscoe          35.3           18.9             187
## 27     Adelie    Biscoe          40.6           18.6             183
## 28     Adelie    Biscoe          40.5           17.9             187
## 29     Adelie    Biscoe          37.9           18.6             172
## 30     Adelie    Biscoe          40.5           18.9             180
## 31     Adelie     Dream          39.5           16.7             178
## 32     Adelie     Dream          37.2           18.1             178
## 33     Adelie     Dream          39.5           17.8             188
## 34     Adelie     Dream          40.9           18.9             184
## 35     Adelie     Dream          36.4           17.0             195
## 36     Adelie     Dream          39.2           21.1             196
## 37     Adelie     Dream          38.8           20.0             190
## 38     Adelie     Dream          42.2           18.5             180
## 39     Adelie     Dream          37.6           19.3             181
## 40     Adelie     Dream          39.8           19.1             184
## 41     Adelie     Dream          36.5           18.0             182
## 42     Adelie     Dream          40.8           18.4             195
## 43     Adelie     Dream          36.0           18.5             186
## 44     Adelie     Dream          44.1           19.7             196
## 45     Adelie     Dream          37.0           16.9             185
## 46     Adelie     Dream          39.6           18.8             190
## 47     Adelie     Dream          41.1           19.0             182
## 49     Adelie     Dream          36.0           17.9             190
## 50     Adelie     Dream          42.3           21.2             191
## 51     Adelie    Biscoe          39.6           17.7             186
## 52     Adelie    Biscoe          40.1           18.9             188
## 53     Adelie    Biscoe          35.0           17.9             190
## 54     Adelie    Biscoe          42.0           19.5             200
## 55     Adelie    Biscoe          34.5           18.1             187
## 56     Adelie    Biscoe          41.4           18.6             191
## 57     Adelie    Biscoe          39.0           17.5             186
## 58     Adelie    Biscoe          40.6           18.8             193
## 59     Adelie    Biscoe          36.5           16.6             181
## 60     Adelie    Biscoe          37.6           19.1             194
## 61     Adelie    Biscoe          35.7           16.9             185
## 62     Adelie    Biscoe          41.3           21.1             195
## 63     Adelie    Biscoe          37.6           17.0             185
## 64     Adelie    Biscoe          41.1           18.2             192
## 65     Adelie    Biscoe          36.4           17.1             184
## 66     Adelie    Biscoe          41.6           18.0             192
## 67     Adelie    Biscoe          35.5           16.2             195
## 68     Adelie    Biscoe          41.1           19.1             188
## 69     Adelie Torgersen          35.9           16.6             190
## 70     Adelie Torgersen          41.8           19.4             198
## 71     Adelie Torgersen          33.5           19.0             190
## 72     Adelie Torgersen          39.7           18.4             190
## 73     Adelie Torgersen          39.6           17.2             196
## 74     Adelie Torgersen          45.8           18.9             197
## 75     Adelie Torgersen          35.5           17.5             190
## 76     Adelie Torgersen          42.8           18.5             195
## 77     Adelie Torgersen          40.9           16.8             191
## 78     Adelie Torgersen          37.2           19.4             184
## 79     Adelie Torgersen          36.2           16.1             187
## 80     Adelie Torgersen          42.1           19.1             195
## 81     Adelie Torgersen          34.6           17.2             189
## 82     Adelie Torgersen          42.9           17.6             196
## 83     Adelie Torgersen          36.7           18.8             187
## 84     Adelie Torgersen          35.1           19.4             193
## 85     Adelie     Dream          37.3           17.8             191
## 86     Adelie     Dream          41.3           20.3             194
## 87     Adelie     Dream          36.3           19.5             190
## 88     Adelie     Dream          36.9           18.6             189
## 89     Adelie     Dream          38.3           19.2             189
## 90     Adelie     Dream          38.9           18.8             190
## 91     Adelie     Dream          35.7           18.0             202
## 92     Adelie     Dream          41.1           18.1             205
## 93     Adelie     Dream          34.0           17.1             185
## 94     Adelie     Dream          39.6           18.1             186
## 95     Adelie     Dream          36.2           17.3             187
## 96     Adelie     Dream          40.8           18.9             208
## 97     Adelie     Dream          38.1           18.6             190
## 98     Adelie     Dream          40.3           18.5             196
## 99     Adelie     Dream          33.1           16.1             178
## 100    Adelie     Dream          43.2           18.5             192
## 101    Adelie    Biscoe          35.0           17.9             192
## 102    Adelie    Biscoe          41.0           20.0             203
## 103    Adelie    Biscoe          37.7           16.0             183
## 104    Adelie    Biscoe          37.8           20.0             190
## 105    Adelie    Biscoe          37.9           18.6             193
## 106    Adelie    Biscoe          39.7           18.9             184
## 107    Adelie    Biscoe          38.6           17.2             199
## 108    Adelie    Biscoe          38.2           20.0             190
## 109    Adelie    Biscoe          38.1           17.0             181
## 110    Adelie    Biscoe          43.2           19.0             197
## 111    Adelie    Biscoe          38.1           16.5             198
## 112    Adelie    Biscoe          45.6           20.3             191
## 113    Adelie    Biscoe          39.7           17.7             193
## 114    Adelie    Biscoe          42.2           19.5             197
## 115    Adelie    Biscoe          39.6           20.7             191
## 116    Adelie    Biscoe          42.7           18.3             196
## 117    Adelie Torgersen          38.6           17.0             188
## 118    Adelie Torgersen          37.3           20.5             199
## 119    Adelie Torgersen          35.7           17.0             189
## 120    Adelie Torgersen          41.1           18.6             189
## 121    Adelie Torgersen          36.2           17.2             187
## 122    Adelie Torgersen          37.7           19.8             198
## 123    Adelie Torgersen          40.2           17.0             176
## 124    Adelie Torgersen          41.4           18.5             202
## 125    Adelie Torgersen          35.2           15.9             186
## 126    Adelie Torgersen          40.6           19.0             199
## 127    Adelie Torgersen          38.8           17.6             191
## 128    Adelie Torgersen          41.5           18.3             195
## 129    Adelie Torgersen          39.0           17.1             191
## 130    Adelie Torgersen          44.1           18.0             210
## 131    Adelie Torgersen          38.5           17.9             190
## 132    Adelie Torgersen          43.1           19.2             197
## 133    Adelie     Dream          36.8           18.5             193
## 134    Adelie     Dream          37.5           18.5             199
## 135    Adelie     Dream          38.1           17.6             187
## 136    Adelie     Dream          41.1           17.5             190
## 137    Adelie     Dream          35.6           17.5             191
## 138    Adelie     Dream          40.2           20.1             200
## 139    Adelie     Dream          37.0           16.5             185
## 140    Adelie     Dream          39.7           17.9             193
## 141    Adelie     Dream          40.2           17.1             193
## 142    Adelie     Dream          40.6           17.2             187
## 143    Adelie     Dream          32.1           15.5             188
## 144    Adelie     Dream          40.7           17.0             190
## 145    Adelie     Dream          37.3           16.8             192
## 146    Adelie     Dream          39.0           18.7             185
## 147    Adelie     Dream          39.2           18.6             190
## 148    Adelie     Dream          36.6           18.4             184
## 149    Adelie     Dream          36.0           17.8             195
## 150    Adelie     Dream          37.8           18.1             193
## 151    Adelie     Dream          36.0           17.1             187
## 152    Adelie     Dream          41.5           18.5             201
## 153    Gentoo    Biscoe          46.1           13.2             211
## 154    Gentoo    Biscoe          50.0           16.3             230
## 155    Gentoo    Biscoe          48.7           14.1             210
## 156    Gentoo    Biscoe          50.0           15.2             218
## 157    Gentoo    Biscoe          47.6           14.5             215
## 158    Gentoo    Biscoe          46.5           13.5             210
## 159    Gentoo    Biscoe          45.4           14.6             211
## 160    Gentoo    Biscoe          46.7           15.3             219
## 161    Gentoo    Biscoe          43.3           13.4             209
## 162    Gentoo    Biscoe          46.8           15.4             215
## 163    Gentoo    Biscoe          40.9           13.7             214
## 164    Gentoo    Biscoe          49.0           16.1             216
## 165    Gentoo    Biscoe          45.5           13.7             214
## 166    Gentoo    Biscoe          48.4           14.6             213
## 167    Gentoo    Biscoe          45.8           14.6             210
## 168    Gentoo    Biscoe          49.3           15.7             217
## 169    Gentoo    Biscoe          42.0           13.5             210
## 170    Gentoo    Biscoe          49.2           15.2             221
## 171    Gentoo    Biscoe          46.2           14.5             209
## 172    Gentoo    Biscoe          48.7           15.1             222
## 173    Gentoo    Biscoe          50.2           14.3             218
## 174    Gentoo    Biscoe          45.1           14.5             215
## 175    Gentoo    Biscoe          46.5           14.5             213
## 176    Gentoo    Biscoe          46.3           15.8             215
## 177    Gentoo    Biscoe          42.9           13.1             215
## 178    Gentoo    Biscoe          46.1           15.1             215
## 180    Gentoo    Biscoe          47.8           15.0             215
## 181    Gentoo    Biscoe          48.2           14.3             210
## 182    Gentoo    Biscoe          50.0           15.3             220
## 183    Gentoo    Biscoe          47.3           15.3             222
## 184    Gentoo    Biscoe          42.8           14.2             209
## 185    Gentoo    Biscoe          45.1           14.5             207
## 186    Gentoo    Biscoe          59.6           17.0             230
## 187    Gentoo    Biscoe          49.1           14.8             220
## 188    Gentoo    Biscoe          48.4           16.3             220
## 189    Gentoo    Biscoe          42.6           13.7             213
## 190    Gentoo    Biscoe          44.4           17.3             219
## 191    Gentoo    Biscoe          44.0           13.6             208
## 192    Gentoo    Biscoe          48.7           15.7             208
## 193    Gentoo    Biscoe          42.7           13.7             208
## 194    Gentoo    Biscoe          49.6           16.0             225
## 195    Gentoo    Biscoe          45.3           13.7             210
## 196    Gentoo    Biscoe          49.6           15.0             216
## 197    Gentoo    Biscoe          50.5           15.9             222
## 198    Gentoo    Biscoe          43.6           13.9             217
## 199    Gentoo    Biscoe          45.5           13.9             210
## 200    Gentoo    Biscoe          50.5           15.9             225
## 201    Gentoo    Biscoe          44.9           13.3             213
## 202    Gentoo    Biscoe          45.2           15.8             215
## 203    Gentoo    Biscoe          46.6           14.2             210
## 204    Gentoo    Biscoe          48.5           14.1             220
## 205    Gentoo    Biscoe          45.1           14.4             210
## 206    Gentoo    Biscoe          50.1           15.0             225
## 207    Gentoo    Biscoe          46.5           14.4             217
## 208    Gentoo    Biscoe          45.0           15.4             220
## 209    Gentoo    Biscoe          43.8           13.9             208
## 210    Gentoo    Biscoe          45.5           15.0             220
## 211    Gentoo    Biscoe          43.2           14.5             208
## 212    Gentoo    Biscoe          50.4           15.3             224
## 213    Gentoo    Biscoe          45.3           13.8             208
## 214    Gentoo    Biscoe          46.2           14.9             221
## 215    Gentoo    Biscoe          45.7           13.9             214
## 216    Gentoo    Biscoe          54.3           15.7             231
## 217    Gentoo    Biscoe          45.8           14.2             219
## 218    Gentoo    Biscoe          49.8           16.8             230
## 220    Gentoo    Biscoe          49.5           16.2             229
## 221    Gentoo    Biscoe          43.5           14.2             220
## 222    Gentoo    Biscoe          50.7           15.0             223
## 223    Gentoo    Biscoe          47.7           15.0             216
## 224    Gentoo    Biscoe          46.4           15.6             221
## 225    Gentoo    Biscoe          48.2           15.6             221
## 226    Gentoo    Biscoe          46.5           14.8             217
## 227    Gentoo    Biscoe          46.4           15.0             216
## 228    Gentoo    Biscoe          48.6           16.0             230
## 229    Gentoo    Biscoe          47.5           14.2             209
## 230    Gentoo    Biscoe          51.1           16.3             220
## 231    Gentoo    Biscoe          45.2           13.8             215
## 232    Gentoo    Biscoe          45.2           16.4             223
## 233    Gentoo    Biscoe          49.1           14.5             212
## 234    Gentoo    Biscoe          52.5           15.6             221
## 235    Gentoo    Biscoe          47.4           14.6             212
## 236    Gentoo    Biscoe          50.0           15.9             224
## 237    Gentoo    Biscoe          44.9           13.8             212
## 238    Gentoo    Biscoe          50.8           17.3             228
## 239    Gentoo    Biscoe          43.4           14.4             218
## 240    Gentoo    Biscoe          51.3           14.2             218
## 241    Gentoo    Biscoe          47.5           14.0             212
## 242    Gentoo    Biscoe          52.1           17.0             230
## 243    Gentoo    Biscoe          47.5           15.0             218
## 244    Gentoo    Biscoe          52.2           17.1             228
## 245    Gentoo    Biscoe          45.5           14.5             212
## 246    Gentoo    Biscoe          49.5           16.1             224
## 247    Gentoo    Biscoe          44.5           14.7             214
## 248    Gentoo    Biscoe          50.8           15.7             226
## 249    Gentoo    Biscoe          49.4           15.8             216
## 250    Gentoo    Biscoe          46.9           14.6             222
## 251    Gentoo    Biscoe          48.4           14.4             203
## 252    Gentoo    Biscoe          51.1           16.5             225
## 253    Gentoo    Biscoe          48.5           15.0             219
## 254    Gentoo    Biscoe          55.9           17.0             228
## 255    Gentoo    Biscoe          47.2           15.5             215
## 256    Gentoo    Biscoe          49.1           15.0             228
## 258    Gentoo    Biscoe          46.8           16.1             215
## 259    Gentoo    Biscoe          41.7           14.7             210
## 260    Gentoo    Biscoe          53.4           15.8             219
## 261    Gentoo    Biscoe          43.3           14.0             208
## 262    Gentoo    Biscoe          48.1           15.1             209
## 263    Gentoo    Biscoe          50.5           15.2             216
## 264    Gentoo    Biscoe          49.8           15.9             229
## 265    Gentoo    Biscoe          43.5           15.2             213
## 266    Gentoo    Biscoe          51.5           16.3             230
## 267    Gentoo    Biscoe          46.2           14.1             217
## 268    Gentoo    Biscoe          55.1           16.0             230
## 270    Gentoo    Biscoe          48.8           16.2             222
## 271    Gentoo    Biscoe          47.2           13.7             214
## 273    Gentoo    Biscoe          46.8           14.3             215
## 274    Gentoo    Biscoe          50.4           15.7             222
## 275    Gentoo    Biscoe          45.2           14.8             212
## 276    Gentoo    Biscoe          49.9           16.1             213
## 277 Chinstrap     Dream          46.5           17.9             192
## 278 Chinstrap     Dream          50.0           19.5             196
## 279 Chinstrap     Dream          51.3           19.2             193
## 280 Chinstrap     Dream          45.4           18.7             188
## 281 Chinstrap     Dream          52.7           19.8             197
## 282 Chinstrap     Dream          45.2           17.8             198
## 283 Chinstrap     Dream          46.1           18.2             178
## 284 Chinstrap     Dream          51.3           18.2             197
## 285 Chinstrap     Dream          46.0           18.9             195
## 286 Chinstrap     Dream          51.3           19.9             198
## 287 Chinstrap     Dream          46.6           17.8             193
## 288 Chinstrap     Dream          51.7           20.3             194
## 289 Chinstrap     Dream          47.0           17.3             185
## 290 Chinstrap     Dream          52.0           18.1             201
## 291 Chinstrap     Dream          45.9           17.1             190
## 292 Chinstrap     Dream          50.5           19.6             201
## 293 Chinstrap     Dream          50.3           20.0             197
## 294 Chinstrap     Dream          58.0           17.8             181
## 295 Chinstrap     Dream          46.4           18.6             190
## 296 Chinstrap     Dream          49.2           18.2             195
## 297 Chinstrap     Dream          42.4           17.3             181
## 298 Chinstrap     Dream          48.5           17.5             191
## 299 Chinstrap     Dream          43.2           16.6             187
## 300 Chinstrap     Dream          50.6           19.4             193
## 301 Chinstrap     Dream          46.7           17.9             195
## 302 Chinstrap     Dream          52.0           19.0             197
## 303 Chinstrap     Dream          50.5           18.4             200
## 304 Chinstrap     Dream          49.5           19.0             200
## 305 Chinstrap     Dream          46.4           17.8             191
## 306 Chinstrap     Dream          52.8           20.0             205
## 307 Chinstrap     Dream          40.9           16.6             187
## 308 Chinstrap     Dream          54.2           20.8             201
## 309 Chinstrap     Dream          42.5           16.7             187
## 310 Chinstrap     Dream          51.0           18.8             203
## 311 Chinstrap     Dream          49.7           18.6             195
## 312 Chinstrap     Dream          47.5           16.8             199
## 313 Chinstrap     Dream          47.6           18.3             195
## 314 Chinstrap     Dream          52.0           20.7             210
## 315 Chinstrap     Dream          46.9           16.6             192
## 316 Chinstrap     Dream          53.5           19.9             205
## 317 Chinstrap     Dream          49.0           19.5             210
## 318 Chinstrap     Dream          46.2           17.5             187
## 319 Chinstrap     Dream          50.9           19.1             196
## 320 Chinstrap     Dream          45.5           17.0             196
## 321 Chinstrap     Dream          50.9           17.9             196
## 322 Chinstrap     Dream          50.8           18.5             201
## 323 Chinstrap     Dream          50.1           17.9             190
## 324 Chinstrap     Dream          49.0           19.6             212
## 325 Chinstrap     Dream          51.5           18.7             187
## 326 Chinstrap     Dream          49.8           17.3             198
## 327 Chinstrap     Dream          48.1           16.4             199
## 328 Chinstrap     Dream          51.4           19.0             201
## 329 Chinstrap     Dream          45.7           17.3             193
## 330 Chinstrap     Dream          50.7           19.7             203
## 331 Chinstrap     Dream          42.5           17.3             187
## 332 Chinstrap     Dream          52.2           18.8             197
## 333 Chinstrap     Dream          45.2           16.6             191
## 334 Chinstrap     Dream          49.3           19.9             203
## 335 Chinstrap     Dream          50.2           18.8             202
## 336 Chinstrap     Dream          45.6           19.4             194
## 337 Chinstrap     Dream          51.9           19.5             206
## 338 Chinstrap     Dream          46.8           16.5             189
## 339 Chinstrap     Dream          45.7           17.0             195
## 340 Chinstrap     Dream          55.8           19.8             207
## 341 Chinstrap     Dream          43.5           18.1             202
## 342 Chinstrap     Dream          49.6           18.2             193
## 343 Chinstrap     Dream          50.8           19.0             210
## 344 Chinstrap     Dream          50.2           18.7             198
##     vucut_kutle cinsiyet  yıl
## 1          3750     male 2007
## 2          3800   female 2007
## 3          3250   female 2007
## 5          3450   female 2007
## 6          3650     male 2007
## 7          3625   female 2007
## 8          4675     male 2007
## 13         3200   female 2007
## 14         3800     male 2007
## 15         4400     male 2007
## 16         3700   female 2007
## 17         3450   female 2007
## 18         4500     male 2007
## 19         3325   female 2007
## 20         4200     male 2007
## 21         3400   female 2007
## 22         3600     male 2007
## 23         3800   female 2007
## 24         3950     male 2007
## 25         3800     male 2007
## 26         3800   female 2007
## 27         3550     male 2007
## 28         3200   female 2007
## 29         3150   female 2007
## 30         3950     male 2007
## 31         3250   female 2007
## 32         3900     male 2007
## 33         3300   female 2007
## 34         3900     male 2007
## 35         3325   female 2007
## 36         4150     male 2007
## 37         3950     male 2007
## 38         3550   female 2007
## 39         3300   female 2007
## 40         4650     male 2007
## 41         3150   female 2007
## 42         3900     male 2007
## 43         3100   female 2007
## 44         4400     male 2007
## 45         3000   female 2007
## 46         4600     male 2007
## 47         3425     male 2007
## 49         3450   female 2007
## 50         4150     male 2007
## 51         3500   female 2008
## 52         4300     male 2008
## 53         3450   female 2008
## 54         4050     male 2008
## 55         2900   female 2008
## 56         3700     male 2008
## 57         3550   female 2008
## 58         3800     male 2008
## 59         2850   female 2008
## 60         3750     male 2008
## 61         3150   female 2008
## 62         4400     male 2008
## 63         3600   female 2008
## 64         4050     male 2008
## 65         2850   female 2008
## 66         3950     male 2008
## 67         3350   female 2008
## 68         4100     male 2008
## 69         3050   female 2008
## 70         4450     male 2008
## 71         3600   female 2008
## 72         3900     male 2008
## 73         3550   female 2008
## 74         4150     male 2008
## 75         3700   female 2008
## 76         4250     male 2008
## 77         3700   female 2008
## 78         3900     male 2008
## 79         3550   female 2008
## 80         4000     male 2008
## 81         3200   female 2008
## 82         4700     male 2008
## 83         3800   female 2008
## 84         4200     male 2008
## 85         3350   female 2008
## 86         3550     male 2008
## 87         3800     male 2008
## 88         3500   female 2008
## 89         3950     male 2008
## 90         3600   female 2008
## 91         3550   female 2008
## 92         4300     male 2008
## 93         3400   female 2008
## 94         4450     male 2008
## 95         3300   female 2008
## 96         4300     male 2008
## 97         3700   female 2008
## 98         4350     male 2008
## 99         2900   female 2008
## 100        4100     male 2008
## 101        3725   female 2009
## 102        4725     male 2009
## 103        3075   female 2009
## 104        4250     male 2009
## 105        2925   female 2009
## 106        3550     male 2009
## 107        3750   female 2009
## 108        3900     male 2009
## 109        3175   female 2009
## 110        4775     male 2009
## 111        3825   female 2009
## 112        4600     male 2009
## 113        3200   female 2009
## 114        4275     male 2009
## 115        3900   female 2009
## 116        4075     male 2009
## 117        2900   female 2009
## 118        3775     male 2009
## 119        3350   female 2009
## 120        3325     male 2009
## 121        3150   female 2009
## 122        3500     male 2009
## 123        3450   female 2009
## 124        3875     male 2009
## 125        3050   female 2009
## 126        4000     male 2009
## 127        3275   female 2009
## 128        4300     male 2009
## 129        3050   female 2009
## 130        4000     male 2009
## 131        3325   female 2009
## 132        3500     male 2009
## 133        3500   female 2009
## 134        4475     male 2009
## 135        3425   female 2009
## 136        3900     male 2009
## 137        3175   female 2009
## 138        3975     male 2009
## 139        3400   female 2009
## 140        4250     male 2009
## 141        3400   female 2009
## 142        3475     male 2009
## 143        3050   female 2009
## 144        3725     male 2009
## 145        3000   female 2009
## 146        3650     male 2009
## 147        4250     male 2009
## 148        3475   female 2009
## 149        3450   female 2009
## 150        3750     male 2009
## 151        3700   female 2009
## 152        4000     male 2009
## 153        4500   female 2007
## 154        5700     male 2007
## 155        4450   female 2007
## 156        5700     male 2007
## 157        5400     male 2007
## 158        4550   female 2007
## 159        4800   female 2007
## 160        5200     male 2007
## 161        4400   female 2007
## 162        5150     male 2007
## 163        4650   female 2007
## 164        5550     male 2007
## 165        4650   female 2007
## 166        5850     male 2007
## 167        4200   female 2007
## 168        5850     male 2007
## 169        4150   female 2007
## 170        6300     male 2007
## 171        4800   female 2007
## 172        5350     male 2007
## 173        5700     male 2007
## 174        5000   female 2007
## 175        4400   female 2007
## 176        5050     male 2007
## 177        5000   female 2007
## 178        5100     male 2007
## 180        5650     male 2007
## 181        4600   female 2007
## 182        5550     male 2007
## 183        5250     male 2007
## 184        4700   female 2007
## 185        5050   female 2007
## 186        6050     male 2007
## 187        5150   female 2008
## 188        5400     male 2008
## 189        4950   female 2008
## 190        5250     male 2008
## 191        4350   female 2008
## 192        5350     male 2008
## 193        3950   female 2008
## 194        5700     male 2008
## 195        4300   female 2008
## 196        4750     male 2008
## 197        5550     male 2008
## 198        4900   female 2008
## 199        4200   female 2008
## 200        5400     male 2008
## 201        5100   female 2008
## 202        5300     male 2008
## 203        4850   female 2008
## 204        5300     male 2008
## 205        4400   female 2008
## 206        5000     male 2008
## 207        4900   female 2008
## 208        5050     male 2008
## 209        4300   female 2008
## 210        5000     male 2008
## 211        4450   female 2008
## 212        5550     male 2008
## 213        4200   female 2008
## 214        5300     male 2008
## 215        4400   female 2008
## 216        5650     male 2008
## 217        4700   female 2008
## 218        5700     male 2008
## 220        5800     male 2008
## 221        4700   female 2008
## 222        5550     male 2008
## 223        4750   female 2008
## 224        5000     male 2008
## 225        5100     male 2008
## 226        5200   female 2008
## 227        4700   female 2008
## 228        5800     male 2008
## 229        4600   female 2008
## 230        6000     male 2008
## 231        4750   female 2008
## 232        5950     male 2008
## 233        4625   female 2009
## 234        5450     male 2009
## 235        4725   female 2009
## 236        5350     male 2009
## 237        4750   female 2009
## 238        5600     male 2009
## 239        4600   female 2009
## 240        5300     male 2009
## 241        4875   female 2009
## 242        5550     male 2009
## 243        4950   female 2009
## 244        5400     male 2009
## 245        4750   female 2009
## 246        5650     male 2009
## 247        4850   female 2009
## 248        5200     male 2009
## 249        4925     male 2009
## 250        4875   female 2009
## 251        4625   female 2009
## 252        5250     male 2009
## 253        4850   female 2009
## 254        5600     male 2009
## 255        4975   female 2009
## 256        5500     male 2009
## 258        5500     male 2009
## 259        4700   female 2009
## 260        5500     male 2009
## 261        4575   female 2009
## 262        5500     male 2009
## 263        5000   female 2009
## 264        5950     male 2009
## 265        4650   female 2009
## 266        5500     male 2009
## 267        4375   female 2009
## 268        5850     male 2009
## 270        6000     male 2009
## 271        4925   female 2009
## 273        4850   female 2009
## 274        5750     male 2009
## 275        5200   female 2009
## 276        5400     male 2009
## 277        3500   female 2007
## 278        3900     male 2007
## 279        3650     male 2007
## 280        3525   female 2007
## 281        3725     male 2007
## 282        3950   female 2007
## 283        3250   female 2007
## 284        3750     male 2007
## 285        4150   female 2007
## 286        3700     male 2007
## 287        3800   female 2007
## 288        3775     male 2007
## 289        3700   female 2007
## 290        4050     male 2007
## 291        3575   female 2007
## 292        4050     male 2007
## 293        3300     male 2007
## 294        3700   female 2007
## 295        3450   female 2007
## 296        4400     male 2007
## 297        3600   female 2007
## 298        3400     male 2007
## 299        2900   female 2007
## 300        3800     male 2007
## 301        3300   female 2007
## 302        4150     male 2007
## 303        3400   female 2008
## 304        3800     male 2008
## 305        3700   female 2008
## 306        4550     male 2008
## 307        3200   female 2008
## 308        4300     male 2008
## 309        3350   female 2008
## 310        4100     male 2008
## 311        3600     male 2008
## 312        3900   female 2008
## 313        3850   female 2008
## 314        4800     male 2008
## 315        2700   female 2008
## 316        4500     male 2008
## 317        3950     male 2008
## 318        3650   female 2008
## 319        3550     male 2008
## 320        3500   female 2008
## 321        3675   female 2009
## 322        4450     male 2009
## 323        3400   female 2009
## 324        4300     male 2009
## 325        3250     male 2009
## 326        3675   female 2009
## 327        3325   female 2009
## 328        3950     male 2009
## 329        3600   female 2009
## 330        4050     male 2009
## 331        3350   female 2009
## 332        3450     male 2009
## 333        3250   female 2009
## 334        4050     male 2009
## 335        3800     male 2009
## 336        3525   female 2009
## 337        3950     male 2009
## 338        3650   female 2009
## 339        3650   female 2009
## 340        4000     male 2009
## 341        3400   female 2009
## 342        3775     male 2009
## 343        4100     male 2009
## 344        3775   female 2009

eksik verilerin silinmesi ardından veri seti boyutları: 333* 8

veri setimizin temizlenmis hali ile yeni veri seti olarak atama;

temiz_penguins<- (na.omit(penguins))

Yeni bir değişken oluşturma

temiz_penguins2<-temiz_penguins %>% 
  mutate(bmi= vucut_kutle/ `yuzgec uzunlugu`)

veri seti boyutlarını gorme; eksik veri ile;

dim(penguins)
## [1] 344   8

eksik veriler temizlendikten sonra;

dim(temiz_penguins)
## [1] 333   8

Turlere gore veri setini gruplama

temiz_penguins2 %>%
  group_by(tur)
## # A tibble: 333 × 9
## # Groups:   tur [3]
##    tur    ada       gaga_uzunlugu gaga_derinligi `yuzgec uzunlugu` vucut_kutle
##    <fct>  <fct>             <dbl>          <dbl>             <int>       <int>
##  1 Adelie Torgersen          39.1           18.7               181        3750
##  2 Adelie Torgersen          39.5           17.4               186        3800
##  3 Adelie Torgersen          40.3           18                 195        3250
##  4 Adelie Torgersen          36.7           19.3               193        3450
##  5 Adelie Torgersen          39.3           20.6               190        3650
##  6 Adelie Torgersen          38.9           17.8               181        3625
##  7 Adelie Torgersen          39.2           19.6               195        4675
##  8 Adelie Torgersen          41.1           17.6               182        3200
##  9 Adelie Torgersen          38.6           21.2               191        3800
## 10 Adelie Torgersen          34.6           21.1               198        4400
## # ℹ 323 more rows
## # ℹ 3 more variables: cinsiyet <fct>, yıl <int>, bmi <dbl>
library(tidyr)
temiz_penguins2 %>% 
  count(bmi,tur) %>%
  pivot_wider(names_from = tur, values_from = n)
## # A tibble: 291 × 4
##      bmi Chinstrap Adelie Gentoo
##    <dbl>     <int>  <int>  <int>
##  1  14.1         1     NA     NA
##  2  15.2        NA      1     NA
##  3  15.4        NA      1     NA
##  4  15.5        NA      1     NA
##  5  15.5         1      1     NA
##  6  15.6        NA      1     NA
##  7  15.7        NA      1     NA
##  8  16.0        NA      1     NA
##  9  16.1        NA      1     NA
## 10  16.2        NA      1     NA
## # ℹ 281 more rows
quantile(temiz_penguins2$bmi)
##       0%      25%      50%      75%     100% 
## 14.06250 18.81188 20.51282 22.74882 28.50679

bmi indeksini belirli kategorik hale getirme

temiz_penguins3 <- temiz_penguins2 %>% mutate(bmi_3cat= if_else( bmi>=23, "yuksek",
                                     if_else(bmi <23 & bmi>19, "orta", "alt")))

ture gore bmi değiskeninin durumu

library(tidyr)
temiz_penguins3 %>% 
  count(tur,bmi_3cat) %>%
  pivot_wider(names_from = bmi_3cat, values_from = n)
## # A tibble: 3 × 4
##   tur         alt  orta yuksek
##   <fct>     <int> <int>  <int>
## 1 Adelie       62    76      8
## 2 Chinstrap    34    34     NA
## 3 Gentoo        1    51     67

bmi degerlerine bakıldığında; adelie türündeki penguenlerin bmi degerlerinin orta duzeyde daha cok olduğu, Chinstrap turunde yuksek bmi degerinde penguen bulunmazken alt ve orta bmi duzeyindeki penguenlerin esit sayıda oldugu, Gentoo turunde penguenlerin ise bmi degerinin yuksek oldugu gorulmektedir.

turlere gore bmi degerlerinin ortalama, st.sapma ve min. max degerleri

temiz_penguins2%>%
  group_by(tur) %>%
  summarise(mean_bmi = mean(bmi))
## # A tibble: 3 × 2
##   tur       mean_bmi
##   <fct>        <dbl>
## 1 Adelie        19.5
## 2 Chinstrap     19.0
## 3 Gentoo        23.4

Adelie türü penguenlerin bmi ortalaması 19,480 iken, Chinstrap türü penguenlerin bmi ortalaması 19,043, en yüksek bmi ortalaması ise Gentoo türü penguenlerin oldugu gorulmektedir.

18.chunkta yapılan islemin bir baska alternatifi:

 temiz_penguins2%>%
  group_by(tur) %>%
  summarise(N=n(), ort=mean(bmi))
## # A tibble: 3 × 3
##   tur           N   ort
##   <fct>     <int> <dbl>
## 1 Adelie      146  19.5
## 2 Chinstrap    68  19.0
## 3 Gentoo      119  23.4
library(ggplot2)
ggplot(temiz_penguins3, aes(x=tur, fill= bmi)) + 
  geom_bar()
## Warning: The following aesthetics were dropped during statistical transformation: fill.
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

degiskenlerin standart sapmaları icin:

bminin ture gore st. sapmasının alınması

library(datasets)
tapply(temiz_penguins3$bmi, temiz_penguins3$tur, sd)
##    Adelie Chinstrap    Gentoo 
##  2.179467  1.598395  1.881543

21.chunkın alternatifi by() fonksiyonu ile de yapılabilir.

by(temiz_penguins3$bmi, temiz_penguins3$tur, sd)
## temiz_penguins3$tur: Adelie
## [1] 2.179467
## ------------------------------------------------------------ 
## temiz_penguins3$tur: Chinstrap
## [1] 1.598395
## ------------------------------------------------------------ 
## temiz_penguins3$tur: Gentoo
## [1] 1.881543
  1. ve 22.Chunkın çıktılarında; Adelie türünün bmi değerlerinin standart sapmasının 2,179 değeri ile en büyük; Chinstrap penguen türünün bmi değerinin standart sapmasının 1,598 değeri ile en küçük olduğu görülmektedir.

bmi degerlerinin min-max degerleri

summarise(temiz_penguins3, min=min(bmi), max=max(bmi))
##       min      max
## 1 14.0625 28.50679

hem ortalama, hem standart sapma hem de min ve max degerlerin hepsinin tek bir komutla hesaplanması

temiz_penguins3 %>%
  group_by(tur) %>%
  summarise(
    ortalama = mean(bmi),
    std_sapma = sd(bmi),
    min_bmi = min(bmi),
    max_bmi = max(bmi)
  )
## # A tibble: 3 × 5
##   tur       ortalama std_sapma min_bmi max_bmi
##   <fct>        <dbl>     <dbl>   <dbl>   <dbl>
## 1 Adelie        19.5      2.18    15.2    25.3
## 2 Chinstrap     19.0      1.60    14.1    22.9
## 3 Gentoo        23.4      1.88    19.0    28.5

turlere gore bmi grafigi

library(ggplot2)

ggplot(temiz_penguins3, aes(x = tur, y = bmi, fill = tur)) +
  geom_boxplot() +
  labs(
    title = "Turlerin bmi Dagilimi",
    x = "Tur",
    y = "bmi"
  ) +
  theme_minimal()

Türlerin bmi değerleri grafikleri incelendiğinde bmi degerlerinin turlere gore farklılık gosterdigi, en yuksek bmi degerinin Gentoo turunde oldugu gorulmektedir. Bİrden çok grup arasındaki farkın anlamlı olup olmadığına ANOVA ile bakıldığında;

ANOVA

FARK <- aov(bmi ~ tur, data = temiz_penguins3)
summary(FARK)
##              Df Sum Sq Mean Sq F value Pr(>F)    
## tur           2   1277   638.6   164.9 <2e-16 ***
## Residuals   330   1278     3.9                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ANOVA testi sonucları; farklı turler arasındaki bmi degerlerinin istatistiksel olarak anlamlı düzeyde farklılık gosterdigi soylenebilir. (p< ,01)

#GOREV 1-Toplam Duzeyde Analiz

Gaga uzunluğu (bill_length_mm) ile gaga derinliği (bill_depth_mm) arasındaki ilişki;

lm(formula= gaga_uzunlugu ~ gaga_derinligi,  data= temiz_penguins3)
## 
## Call:
## lm(formula = gaga_uzunlugu ~ gaga_derinligi, data = temiz_penguins3)
## 
## Coefficients:
##    (Intercept)  gaga_derinligi  
##        54.8909         -0.6349

Tum grupta; gaga_uzunlugu ile gaga_derinligi arasındaki korelasyon 0,63 değerinde ve negatif yonlu cıkmıstır.

geom_point() kullanarak scatter plot oluşturma; Tum grupta gaga_uzunlugu gaga_derinligi iliskisi:

ggplot(temiz_penguins3, aes(x=gaga_uzunlugu,y=gaga_derinligi))+
  geom_point() +
  geom_smooth(method="lm")
## `geom_smooth()` using formula = 'y ~ x'

grafik incelendiginde; tum grupta gaga_uzunlugu arttıkca gaga_derinligi azalmakta, negatif yonlu korelasyon gorulmektedir.

Bu ilişkiyi doğrulamak için basit bir doğrusal regresyon modeli kurma:

regresyon <- lm(formula = gaga_uzunlugu ~ gaga_derinligi, data = temiz_penguins3)
summary(regresyon)
## 
## Call:
## lm(formula = gaga_uzunlugu ~ gaga_derinligi, data = temiz_penguins3)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -12.9498  -3.9530  -0.3657   3.7327  15.5025 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     54.8909     2.5673  21.380  < 2e-16 ***
## gaga_derinligi  -0.6349     0.1486  -4.273 2.53e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5.332 on 331 degrees of freedom
## Multiple R-squared:  0.05227,    Adjusted R-squared:  0.04941 
## F-statistic: 18.26 on 1 and 331 DF,  p-value: 2.528e-05

Gaga uzunlugunun %5’inin gaga derinliği tarafından yordanmaktadır.gaga_uzunlugu ~ gaga_derinligi arasındaki iliski istatistiksel olarak anlamlıdır. (p<,01)

#GOREV 2- Tur Bazında Analiz

Veriyi türlere göre ayırın (group_by(species) veya filter() kullanabilirsiniz):

adelie <- temiz_penguins3 %>% filter(tur == "Adelie")
chinstrap <- temiz_penguins3 %>% filter(tur == "Chinstrap")
gentoo <- temiz_penguins3 %>% filter(tur == "Gentoo")

turlere gore gaga_uzunlugu gaga_derinligi iliskisi;

ggplot(temiz_penguins3, aes(x = gaga_uzunlugu, y = gaga_derinligi, color = tur)) +
  geom_point() +
  geom_smooth(method = "lm", se = FALSE) +
  labs(
    title = "Gaga Uzunluğu ve Gaga Derinliği İlişkisi",
    x = "Gaga Uzunluğu (mm)",
    y = "Gaga Derinliği (mm)"
  ) +
  theme_minimal()
## `geom_smooth()` using formula = 'y ~ x'

grafik incelendiginde; alt gruplar bazında incelendiginde gaga_uzunlugu ile gaga_derinliginin pozitif korelasyon gosterdigi gorulmektedir.

Tür bazında regresyon modelleri kurma: Adelie turu icin model;

regresyon_turA <- lm(formula = gaga_uzunlugu ~ gaga_derinligi, 
            data =adelie)
summary(regresyon_turA)
## 
## Call:
## lm(formula = gaga_uzunlugu ~ gaga_derinligi, data = adelie)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.5431 -1.8369  0.0158  1.7181  6.5104 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     23.3668     3.0869   7.570 4.10e-12 ***
## gaga_derinligi   0.8425     0.1679   5.018 1.51e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.465 on 144 degrees of freedom
## Multiple R-squared:  0.1489, Adjusted R-squared:  0.1429 
## F-statistic: 25.18 on 1 and 144 DF,  p-value: 1.515e-06

Gaga uzunlugunun %14’ü gaga derinliği tarafından yordanmaktadır.gaga_uzunlugu ~ gaga_derinligi arasındaki iliski istatistiksel olarak anlamlıdır. (p<,01)

chinstrap turu icin model;

regresyon_turC <- lm(formula = gaga_uzunlugu ~ gaga_derinligi, 
            data =chinstrap)
summary(regresyon_turC)
## 
## Call:
## lm(formula = gaga_uzunlugu ~ gaga_derinligi, data = chinstrap)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.1163 -1.2641 -0.1254  1.4807 10.3590 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      13.428      5.057   2.655  0.00992 ** 
## gaga_derinligi    1.922      0.274   7.015 1.53e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.547 on 66 degrees of freedom
## Multiple R-squared:  0.4271, Adjusted R-squared:  0.4184 
## F-statistic: 49.21 on 1 and 66 DF,  p-value: 1.526e-09

Gaga uzunlugunun % 42’si gaga derinliği tarafından yordanmaktadır.gaga_uzunlugu ~ gaga_derinligi arasındaki iliski istatistiksel olarak anlamlıdır. (p<,01)

gentoo turu icin model;

regresyon_turG <- lm(formula = gaga_uzunlugu ~ gaga_derinligi, 
            data =gentoo)
summary(regresyon_turG)
## 
## Call:
## lm(formula = gaga_uzunlugu ~ gaga_derinligi, data = gentoo)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -7.914 -1.445  0.125  1.315  7.904 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     16.6702     3.3110   5.035 1.75e-06 ***
## gaga_derinligi   2.0603     0.2203   9.352 7.34e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.36 on 117 degrees of freedom
## Multiple R-squared:  0.4277, Adjusted R-squared:  0.4229 
## F-statistic: 87.45 on 1 and 117 DF,  p-value: 7.337e-16

Gaga uzunlugunun % 42’si gaga derinliği tarafından yordanmaktadır.gaga_uzunlugu ~ gaga_derinligi arasındaki iliski istatistiksel olarak anlamlıdır. (p<,01)

Sonucların akrsılastırılması

karsılastırma <- data.frame(
  Tur = c("Adelie", "Chinstrap", "Gentoo"),
  Eğim = c(coef(regresyon_turA)[2],
           coef(regresyon_turC)[2],
           coef(regresyon_turG)[2]),
  P_degeri = c(summary(regresyon_turA)$coefficients[2,4],
               summary(regresyon_turC)$coefficients[2,4],
               summary(regresyon_turG)$coefficients[2,4])
)

print(karsılastırma )
##         Tur      Eğim     P_degeri
## 1    Adelie 0.8424775 1.514901e-06
## 2 Chinstrap 1.9220839 1.525539e-09
## 3    Gentoo 2.0603208 7.336624e-16

Her bir türde eğim pozitif. Tür düzeyinde elde edilen ilişki, toplam düzeydeki ilişkiyle çelişmekte.Tüm grupta gaga uzunlugu ve gaga derinligi negatif iliski gosterirken turlere gore degiskenler arasındaki iliski pozitif.

#GOREV 3- Yorum ve Tartısma

Toplam veri setinde neden negatif ilişki gözlemlediniz? Toplam veride uc farklı turde penguen turune ait veriler olmakal birlikte penguen turlerindeki beslenme alıskanlıkları, genetik faktorler, kullanım sekilleri gibi sebeplerle farklılk gostermesi ile veri setinde incelenen penguen turlerinin gaga uzunlugu ve derinligi negatiff cıkmıs olabilir.

Tür bilgisi eklendiğinde ilişkinin yön değiştirmesi; Tur bilgisi eklenmeden yapılan tum grup analizinde farklı ture ait tum penguenler birarada degerlendirilerek buna gore bir sonuc elde edilmektedir. Ancak her bir turu gruplandırarak veriler incelendiginde her bir alt grubun bireyleri kendi icinde degerlendirilmekte ve aynı turdeki bireyin ozellikleri degerlendirilmektedir.

Bu durum Simpson Paradoksu çerçevesinde acıklanacak olursa; Simpson Paradoksunda; bir veri setindeki incelemelerin genel ve belirli ölcute gore yapıldıgında sonucların ve anlamlılıkların degisebileceği durumu soz konusudur. İncelenen penguins veri setinde de incelenen degiskenler arasındaki iliski turlerin ayrımı yapılmadan farklı sonuc vermekte, turler alt gruplar olarak incelendiginde farklı sonuc elde edilmektedir.

Bu örnek, verileri alt gruplara göre incelemenin neden önemli olduğunu nasıl göstermektedir? Elde edilen sonucların yorumlanmasında, iliskilerin ortaya konulmasında veri setinin iyi anlasılması bakımından genel grup ve alt grup analizlerinin ayrı ayrı ve birlikte degerlendirilmesi sonucların mevcut durumu dogru yansıtabilmesi bakımından önemlidir.

##R OGRENME GUNLUGUM R ile veri analizinde; grafiklerin ozelliklerinden ; bir veri setindeki degişken isimlerini degistirebilmenin rename fonksiyonu ile, tablodaki oranların virgül sonrasını azaltmak için round fonksiyonu ile, RMarkdown olusturabilme RStudio>File>New File>R Markdown sekmeleri ile Markdown dosyasını yayınlayabilme; R sTUDİO ana konsolda Publish fonksiyonu ile, baslık ve duz metin yazım farkında # isaretinin kullanımı RMarkdown dosyasında ilk Chunk olan belgenin künye bilgilerinden; toc: bilgisi ile Outlineda gezinme secenegi aktiflesmekte, echo= FALSE komutu RMarkdown dosyasında kod cıktısını ekler ancak kodu vermez. anscomb veri setinde x’lerin ve y lerin bazı degerleri icin;

library(datasets) anscombe colMeans(anscombe) sapply(anscombe, mean) #bir veri setindeki aynı sütundaki verilerle hesap için sapply(anscombe, sd) #st.sapmayı hesaplamak için round(sapply(anscombe, mean), 3) #virgül sonrası basamk sayısını deştrmk için round(cor(anscombe[,1:4], anscombe[5:8]),3) #korelasyon hesabı {r} lm(y1 ~ x1 , anscombe) lm(y2 ~ x2 , anscombe) lm(y3 ~ x3 , anscombe) lm(y4 ~ x4 , anscombe)