library(readr)
env_health <- read_csv("C:/Users/HP/OneDrive/Desktop/env_health.csv")
## Rows: 180 Columns: 10
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (7): district, residence, toilet_type, water_source, handwashing_facilit...
## dbl (3): household_id, household_size, household_income
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
View(env_health)
library(gtsummary)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
 env_health %>% 
  tbl_summary()
Characteristic N = 1801
household_id 91 (46, 136)
district
    Barishal 24 (13%)
    Chattogram 21 (12%)
    Dhaka 22 (12%)
    Khulna 19 (11%)
    Mymensingh 27 (15%)
    Rajshahi 24 (13%)
    Rangpur 23 (13%)
    Sylhet 20 (11%)
residence
    Rural 82 (46%)
    Urban 98 (54%)
household_size
    2 26 (14%)
    3 20 (11%)
    4 23 (13%)
    5 27 (15%)
    6 18 (10%)
    7 28 (16%)
    8 21 (12%)
    9 17 (9.4%)
toilet_type
    Improved 112 (62%)
    Open defecation 20 (11%)
    Unimproved 48 (27%)
water_source
    Piped 75 (42%)
    Surface water 16 (8.9%)
    Tube well 89 (49%)
handwashing_facility 137 (76%)
waste_disposal
    Improper 56 (31%)
    Proper 124 (69%)
reported_diarrhea_case 41 (23%)
household_income 29,146 (17,128, 42,825)
1 Median (Q1, Q3); n (%)
env_health %>%
  tbl_summary(
    by = waste_disposal)
Characteristic Improper
N = 56
1
Proper
N = 124
1
household_id 92 (59, 132) 89 (39, 136)
district

    Barishal 7 (13%) 17 (14%)
    Chattogram 5 (8.9%) 16 (13%)
    Dhaka 10 (18%) 12 (9.7%)
    Khulna 8 (14%) 11 (8.9%)
    Mymensingh 6 (11%) 21 (17%)
    Rajshahi 9 (16%) 15 (12%)
    Rangpur 8 (14%) 15 (12%)
    Sylhet 3 (5.4%) 17 (14%)
residence

    Rural 22 (39%) 60 (48%)
    Urban 34 (61%) 64 (52%)
household_size

    2 10 (18%) 16 (13%)
    3 6 (11%) 14 (11%)
    4 9 (16%) 14 (11%)
    5 10 (18%) 17 (14%)
    6 3 (5.4%) 15 (12%)
    7 8 (14%) 20 (16%)
    8 7 (13%) 14 (11%)
    9 3 (5.4%) 14 (11%)
toilet_type

    Improved 35 (63%) 77 (62%)
    Open defecation 6 (11%) 14 (11%)
    Unimproved 15 (27%) 33 (27%)
water_source

    Piped 24 (43%) 51 (41%)
    Surface water 7 (13%) 9 (7.3%)
    Tube well 25 (45%) 64 (52%)
handwashing_facility 45 (80%) 92 (74%)
reported_diarrhea_case 9 (16%) 32 (26%)
household_income 30,717 (17,470, 43,876) 28,562 (17,128, 42,327)
1 Median (Q1, Q3); n (%)
model <- glm( factor(waste_disposal) ~ residence + household_size + toilet_type + water_source + handwashing_facility + reported_diarrhea_case + household_income, data = env_health, family = "binomial")


 tbl_regression(model)
Characteristic log(OR) 95% CI p-value
residence


    Rural
    Urban -0.39 -1.1, 0.29 0.3
household_size 0.11 -0.04, 0.26 0.2
toilet_type


    Improved
    Open defecation 0.11 -0.94, 1.2 0.8
    Unimproved 0.06 -0.69, 0.84 0.9
water_source


    Piped
    Surface water -0.59 -1.7, 0.58 0.3
    Tube well 0.21 -0.49, 0.91 0.6
handwashing_facility


    No
    Yes -0.25 -1.1, 0.55 0.5
reported_diarrhea_case


    No
    Yes 0.66 -0.15, 1.5 0.13
household_income 0.00 0.00, 0.00 0.7
Abbreviations: CI = Confidence Interval, OR = Odds Ratio