Summary of Concepts Learned
In Prof. Paulsons course going over R for Data Science: Analysis and
Visualization I learned several different useful applications for R
Studio, such as: - Data Wrangling to filter, sort, change, and summarize
datasets - Data Visualization with various graphs, charts, and
histograms - Data Importation using CSV from external scources to
analyzing it within R Studio - Replicating data through R Notebooks and
RMarkdown - How to tidy datasets, utilizing ‘tidyr’ - How to explore
realworld datasets using RStudio
Finding statistics of a dataset using internal parameters
library(tidyverse)
data("mtcars")
# groups data by cylinders, find mpg/weight
mtcars_summary <- mtcars %>%
group_by(cyl) %>%
summarise(
avg_mpg = mean(mpg),
avg_wt = mean(wt)
)
print(mtcars_summary)
Using ChatGPT to determine the spread of EV registration across the
United States
library(tidyverse)
ev_data <- read_csv("EV_Cleaned.csv")
# Get the top 3 states by registration count
top3 <- ev_data %>%
arrange(desc(`Registration Count`)) %>%
slice(1:3)
# Calculate total national registrations
total_national <- sum(ev_data$`Registration Count`)
# Calculate 'Other States' total
others_total <- total_national - sum(top3$`Registration Count`)
# Create final data frame for plotting
pie_data <- top3 %>%
select(State, `Registration Count`) %>%
add_row(State = "Other States", `Registration Count` = others_total)
# Create pie chart
pie(pie_data$`Registration Count`,
labels = paste0(pie_data$State, " (", round(100 * pie_data$`Registration Count` / sum(pie_data$`Registration Count`), 1), "%)"),
main = "Top 3 States vs Rest of US - EV Registrations (2023)",
col = rainbow(4))
LS0tDQp0aXRsZTogIlByb2plY3QgNiINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQojIyBDZXJ0aWZpY2F0ZQ0KIVtDZXJ0aWZpY2F0ZV0oL1VzZXJzL2Nhc3NpL09uZURyaXZlL0RvY3VtZW50cy9wcm9qZWN0Ni9DZXJ0aWZpY2F0ZU9mQ29tcGxldGlvbi5wZGYpDQoNCiMjIFN1bW1hcnkgb2YgQ29uY2VwdHMgTGVhcm5lZA0KSW4gUHJvZi4gUGF1bHNvbnMgY291cnNlIGdvaW5nIG92ZXIgUiBmb3IgRGF0YSBTY2llbmNlOiBBbmFseXNpcyBhbmQgVmlzdWFsaXphdGlvbiBJIGxlYXJuZWQgc2V2ZXJhbCBkaWZmZXJlbnQgdXNlZnVsIGFwcGxpY2F0aW9ucyBmb3IgUiBTdHVkaW8sIHN1Y2ggYXM6DQotIERhdGEgV3JhbmdsaW5nIHRvIGZpbHRlciwgc29ydCwgY2hhbmdlLCBhbmQgc3VtbWFyaXplIGRhdGFzZXRzDQotIERhdGEgVmlzdWFsaXphdGlvbiB3aXRoIHZhcmlvdXMgZ3JhcGhzLCBjaGFydHMsIGFuZCBoaXN0b2dyYW1zDQotIERhdGEgSW1wb3J0YXRpb24gdXNpbmcgQ1NWIGZyb20gZXh0ZXJuYWwgc2NvdXJjZXMgdG8gYW5hbHl6aW5nIGl0IHdpdGhpbiBSIFN0dWRpbw0KLSBSZXBsaWNhdGluZyBkYXRhIHRocm91Z2ggUiBOb3RlYm9va3MgYW5kIFJNYXJrZG93bg0KLSBIb3cgdG8gdGlkeSBkYXRhc2V0cywgdXRpbGl6aW5nICd0aWR5cicNCi0gSG93IHRvIGV4cGxvcmUgcmVhbHdvcmxkIGRhdGFzZXRzIHVzaW5nIFJTdHVkaW8NCg0KIyMgRmluZGluZyBzdGF0aXN0aWNzIG9mIGEgZGF0YXNldCB1c2luZyBpbnRlcm5hbCBwYXJhbWV0ZXJzIA0KYGBge3J9DQpsaWJyYXJ5KHRpZHl2ZXJzZSkNCg0KZGF0YSgibXRjYXJzIikNCg0KIyBncm91cHMgZGF0YSBieSBjeWxpbmRlcnMsIGZpbmQgbXBnL3dlaWdodA0KbXRjYXJzX3N1bW1hcnkgPC0gbXRjYXJzICU+JQ0KICBncm91cF9ieShjeWwpICU+JQ0KICBzdW1tYXJpc2UoDQogICAgYXZnX21wZyA9IG1lYW4obXBnKSwNCiAgICBhdmdfd3QgPSBtZWFuKHd0KQ0KICApDQoNCnByaW50KG10Y2Fyc19zdW1tYXJ5KQ0KYGBgDQoNCiMjIFVzaW5nIENoYXRHUFQgdG8gZGV0ZXJtaW5lIHRoZSBzcHJlYWQgb2YgRVYgcmVnaXN0cmF0aW9uIGFjcm9zcyB0aGUgVW5pdGVkIFN0YXRlcw0KYGBge3J9DQpsaWJyYXJ5KHRpZHl2ZXJzZSkNCmV2X2RhdGEgPC0gcmVhZF9jc3YoIkVWX0NsZWFuZWQuY3N2IikNCg0KDQojIEdldCB0aGUgdG9wIDMgc3RhdGVzIGJ5IHJlZ2lzdHJhdGlvbiBjb3VudA0KdG9wMyA8LSBldl9kYXRhICU+JQ0KICBhcnJhbmdlKGRlc2MoYFJlZ2lzdHJhdGlvbiBDb3VudGApKSAlPiUNCiAgc2xpY2UoMTozKQ0KDQojIENhbGN1bGF0ZSB0b3RhbCBuYXRpb25hbCByZWdpc3RyYXRpb25zDQp0b3RhbF9uYXRpb25hbCA8LSBzdW0oZXZfZGF0YSRgUmVnaXN0cmF0aW9uIENvdW50YCkNCg0KIyBDYWxjdWxhdGUgJ090aGVyIFN0YXRlcycgdG90YWwNCm90aGVyc190b3RhbCA8LSB0b3RhbF9uYXRpb25hbCAtIHN1bSh0b3AzJGBSZWdpc3RyYXRpb24gQ291bnRgKQ0KDQojIENyZWF0ZSBmaW5hbCBkYXRhIGZyYW1lIGZvciBwbG90dGluZw0KcGllX2RhdGEgPC0gdG9wMyAlPiUNCiAgc2VsZWN0KFN0YXRlLCBgUmVnaXN0cmF0aW9uIENvdW50YCkgJT4lDQogIGFkZF9yb3coU3RhdGUgPSAiT3RoZXIgU3RhdGVzIiwgYFJlZ2lzdHJhdGlvbiBDb3VudGAgPSBvdGhlcnNfdG90YWwpDQoNCiMgQ3JlYXRlIHBpZSBjaGFydA0KcGllKHBpZV9kYXRhJGBSZWdpc3RyYXRpb24gQ291bnRgLA0KICAgIGxhYmVscyA9IHBhc3RlMChwaWVfZGF0YSRTdGF0ZSwgIiAoIiwgcm91bmQoMTAwICogcGllX2RhdGEkYFJlZ2lzdHJhdGlvbiBDb3VudGAgLyBzdW0ocGllX2RhdGEkYFJlZ2lzdHJhdGlvbiBDb3VudGApLCAxKSwgIiUpIiksDQogICAgbWFpbiA9ICJUb3AgMyBTdGF0ZXMgdnMgUmVzdCBvZiBVUyAtIEVWIFJlZ2lzdHJhdGlvbnMgKDIwMjMpIiwNCiAgICBjb2wgPSByYWluYm93KDQpKQ0KDQpgYGANCg==