My presentation will be on simple linear regressions
2025-10-16
My presentation will be on simple linear regressions
library(ggplot2) ggplot(trees, aes(x=Height, y=Volume)) + geom_point() + geom_smooth(method="lm", color="darkgreen") + labs(title="Linear Regression of Volume on Girth", x ="Tree Height (ft)", y="Tree Volume (ft^3)")
library(plotly) model = lm(mpg ~ hp + qsec, data=mtcars) horsepowerseq = seq(min(mtcars$hp), max(mtcars$hp), length.out = 30) timeseq = seq(min(mtcars$qsec), max(mtcars$qsec), length.out=30) grid = expand.grid(hp = horsepowerseq, qsec = timeseq) grid$mpg_est = predict(model, newdata = grid) matr = matrix(grid$mpg_est, nrow=length(horsepowerseq), ncol=length(timeseq)) p = plot_ly() %>% add_markers( data = mtcars, x = ~hp, y = ~qsec, z= ~mpg, marker = list(size=8), name = "Observed Data" ) %>% add_surface( x=horsepowerseq, y=timeseq, z=matr, name = "Regression Plane" ) %>% layout( title="Predicting Fuel Efficiency", scene = list( xaxis = list(title="Horsepower"), yaxis = list(title="1/4 Mile Time"), zaxis = list(title = "MPG") ) ) p