This is the R portion of your midterm exam. You will analyze the Salary dataset, which contains information salary for Assistant Professors, Associate Professors and Professors in a college in the U.S in 2008-2009. For each of the variables, please check the code book here:
I’ve reviewed this dataset, and confirmed that there is no missing values.
Please follow the instructions carefully and write your R code in the provided chunks. You will be graded on the correctness of your code, the quality of your analysis, and your interpretation of the results.
Total points: 10
Good luck!
Salary, and display the first few rows. (1 points)Salary <- read.csv("salaries.csv")
head(Salary, n = 5)
## rank discipline yrs.since.phd yrs.service sex salary
## 1 Prof B 19 18 Male 139.75
## 2 Prof B 20 16 Male 173.20
## 3 AsstProf B 4 3 Male 79.75
## 4 Prof B 45 39 Male 115.00
## 5 Prof B 40 41 Male 141.50
str(Salary)
## 'data.frame': 397 obs. of 6 variables:
## $ rank : chr "Prof" "Prof" "AsstProf" "Prof" ...
## $ discipline : chr "B" "B" "B" "B" ...
## $ yrs.since.phd: int 19 20 4 45 40 6 30 45 21 18 ...
## $ yrs.service : int 18 16 3 39 41 6 23 45 20 18 ...
## $ sex : chr "Male" "Male" "Male" "Male" ...
## $ salary : num 139.8 173.2 79.8 115 141.5 ...
There are 397 observations and 6 variables. Among these, 3 are numeric and 3 are categorical.
snake_case <- Salary$yrs.since.phd
snake_case1 <- Salary$yrs.service
rank and
discipline. (How many AsstProf, AssocProf, and Prof; and
how many of them are in theoretical departments and how many in applied
departments). (1)table(Salary$rank)
##
## AssocProf AsstProf Prof
## 64 67 266
table(Salary$discipline)
##
## A B
## 181 216
Assistant Prof: 67. Associate Prof: 64. Prof: 266 Theoretical: 181. Applied: 216
plot() or ggplot()). Add a title and proper
axis labels. You don’t need to interpret the result here but you should
know how. (1 points)library(ggplot2)
ggplot(data = Salary, aes(y = salary, x = rank)) +
geom_boxplot() +
labs(title = "Salary vs Rank", x = "Rank", y = "Salary (1000s)")
Salary_train and Salary_test. A
part of the code was given, please finish it. (1 points)training_index <- sample(1:nrow(Salary), round(0.8 * nrow(Salary)))
Salary_train <- Salary[training_index, ]
Salary_train
## rank discipline yrs.since.phd yrs.service sex salary
## 274 AsstProf A 8 4 Male 74.000
## 375 Prof A 27 19 Male 103.275
## 263 Prof A 31 26 Male 121.200
## 285 AssocProf A 8 6 Male 88.650
## 181 Prof B 11 11 Male 142.467
## 30 Prof B 12 8 Male 118.223
## 160 Prof B 15 16 Male 137.167
## 367 Prof A 15 10 Male 115.435
## 166 Prof B 21 8 Male 105.890
## 44 Prof B 38 38 Male 231.545
## 213 Prof B 15 7 Male 128.400
## 266 Prof A 36 30 Male 134.800
## 363 Prof A 30 30 Male 138.771
## 139 AssocProf A 10 7 Male 73.877
## 278 Prof A 31 27 Male 163.200
## 298 Prof A 17 11 Male 148.800
## 12 AsstProf B 7 2 Male 79.800
## 279 Prof A 24 18 Male 107.100
## 62 AsstProf B 3 2 Male 75.243
## 224 Prof B 34 20 Male 129.600
## 342 Prof B 17 17 Female 124.312
## 206 Prof B 21 2 Male 96.545
## 317 AssocProf B 12 9 Female 71.065
## 135 Prof A 35 25 Male 168.635
## 267 Prof A 43 43 Male 143.940
## 171 AsstProf B 5 5 Male 91.227
## 281 Prof A 39 38 Male 136.500
## 185 Prof B 23 23 Male 101.000
## 91 AsstProf B 10 5 Female 97.032
## 326 AsstProf B 8 4 Male 84.500
## 140 Prof A 21 18 Male 152.664
## 23 Prof A 34 30 Male 93.904
## 35 AsstProf B 4 2 Female 80.225
## 3 AsstProf B 4 3 Male 79.750
## 151 Prof B 14 12 Male 128.148
## 124 AssocProf A 25 22 Female 62.884
## 309 AsstProf A 5 0 Male 74.000
## 4 Prof B 45 39 Male 115.000
## 116 Prof A 21 9 Male 120.806
## 319 Prof B 16 16 Male 134.550
## 234 Prof A 36 19 Female 117.555
## 146 Prof B 28 28 Male 119.015
## 75 Prof B 28 23 Male 113.398
## 16 Prof B 12 3 Male 117.150
## 147 AsstProf B 4 4 Male 92.000
## 270 Prof A 13 7 Male 103.700
## 144 AsstProf B 3 3 Male 89.942
## 92 AssocProf B 10 7 Male 105.128
## 361 Prof A 14 11 Male 121.946
## 379 Prof A 38 38 Male 150.680
## 118 Prof A 39 36 Male 117.515
## 47 Prof B 40 28 Male 98.193
## 384 Prof A 44 44 Male 105.000
## 322 AssocProf B 9 9 Male 95.642
## 99 Prof B 30 14 Male 102.235
## 330 Prof B 23 23 Male 134.778
## 216 Prof B 16 11 Male 145.350
## 104 Prof B 20 14 Female 127.512
## 138 Prof A 17 14 Male 105.668
## 105 AssocProf A 18 10 Male 83.850
## 391 Prof A 40 19 Male 166.605
## 252 Prof A 20 8 Male 102.000
## 250 Prof A 29 7 Male 204.000
## 255 Prof A 28 7 Female 116.450
## 130 AsstProf A 4 2 Male 73.000
## 193 Prof B 19 18 Male 122.100
## 122 Prof A 32 32 Male 124.309
## 108 AssocProf A 10 8 Male 82.600
## 5 Prof B 40 41 Male 141.500
## 345 Prof B 32 35 Male 150.376
## 71 Prof B 17 2 Male 126.320
## 65 AsstProf B 4 3 Male 68.404
## 158 AsstProf B 1 0 Male 88.000
## 238 AsstProf A 7 6 Female 63.100
## 325 Prof B 30 31 Male 162.221
## 41 Prof B 23 2 Male 146.500
## 202 Prof B 40 40 Male 119.700
## 136 Prof A 20 18 Male 136.000
## 304 Prof A 14 4 Male 105.260
## 305 Prof A 46 44 Male 144.050
## 265 Prof A 37 35 Male 99.000
## 6 AssocProf B 6 6 Male 97.000
## 169 AssocProf B 8 6 Male 101.210
## 194 AssocProf B 19 19 Male 86.250
## 184 Prof B 26 22 Male 150.000
## 178 AssocProf B 13 9 Male 100.944
## 36 AsstProf B 5 0 Female 77.000
## 89 Prof B 25 25 Male 172.272
## 273 AsstProf A 4 1 Male 73.000
## 28 AsstProf B 5 3 Male 82.379
## 26 Prof A 21 8 Male 106.294
## 31 Prof B 20 4 Male 132.261
## 349 AsstProf B 4 3 Male 80.139
## 1 Prof B 19 18 Male 139.750
## 226 Prof A 20 20 Male 122.400
## 8 Prof B 45 45 Male 147.765
## 106 Prof A 31 28 Male 113.543
## 295 Prof A 19 7 Male 107.300
## 176 Prof B 28 25 Male 111.751
## 262 Prof A 45 45 Male 107.550
## 154 AssocProf B 12 10 Female 103.994
## 221 Prof B 21 21 Male 170.000
## 308 Prof A 31 28 Male 122.500
## 240 Prof A 19 6 Male 96.200
## 132 Prof A 56 57 Male 76.840
## 207 Prof B 35 33 Male 162.200
## 371 AssocProf A 13 8 Male 78.182
## 128 AsstProf A 2 0 Female 72.500
## 275 AsstProf A 8 3 Female 78.500
## 360 AsstProf A 11 4 Male 78.785
## 172 Prof B 19 19 Male 151.575
## 211 AsstProf B 4 3 Male 91.000
## 79 AsstProf B 3 1 Male 86.100
## 180 AsstProf B 3 3 Female 92.000
## 52 Prof B 12 11 Male 108.875
## 58 AssocProf B 9 8 Male 90.215
## 323 AssocProf B 13 11 Male 126.431
## 259 AsstProf A 9 3 Male 73.800
## 219 AssocProf B 14 7 Female 109.650
## 314 Prof A 35 35 Male 100.351
## 161 AsstProf B 2 2 Male 89.516
## 327 Prof B 23 15 Male 124.714
## 374 Prof A 30 26 Male 136.660
## 350 Prof B 27 28 Male 144.309
## 51 Prof B 28 28 Male 126.621
## 157 AssocProf B 12 18 Male 113.341
## 125 Prof A 24 22 Male 96.614
## 246 Prof A 17 11 Female 90.450
## 15 Prof B 20 18 Male 104.800
## 352 Prof B 38 38 Male 93.519
## 126 Prof A 54 49 Male 78.162
## 291 Prof A 33 7 Male 174.500
## 155 AsstProf B 4 0 Male 92.000
## 66 AssocProf B 9 8 Male 100.522
## 189 AssocProf B 28 28 Male 106.300
## 318 Prof B 46 45 Male 67.559
## 241 AsstProf A 5 3 Male 69.200
## 94 Prof B 38 38 Male 166.024
## 148 Prof B 27 27 Male 156.938
## 343 Prof B 38 38 Male 114.596
## 395 Prof A 42 25 Male 101.738
## 235 AsstProf A 8 3 Male 69.700
## 396 Prof A 25 15 Male 95.329
## 170 Prof B 25 18 Male 181.257
## 324 Prof B 24 15 Female 161.101
## 306 Prof A 33 31 Male 111.350
## 348 Prof B 39 33 Male 128.250
## 177 AssocProf B 10 7 Male 95.436
## 59 AssocProf B 10 9 Male 100.135
## 133 AssocProf A 10 8 Female 77.500
## 54 Prof B 16 9 Male 106.639
## 131 AssocProf A 11 9 Male 83.001
## 347 Prof B 41 27 Male 142.023
## 29 AsstProf B 11 0 Male 77.000
## 48 Prof B 23 19 Female 151.768
## 386 Prof A 15 9 Male 114.330
## 301 Prof A 39 36 Male 88.600
## 340 Prof B 37 15 Male 137.317
## 156 Prof B 21 21 Male 118.971
## 50 AsstProf B 1 1 Male 70.768
## 42 AssocProf B 23 23 Male 93.418
## 260 Prof A 32 30 Male 92.550
## 107 AssocProf A 11 8 Male 82.099
## 353 Prof B 26 27 Male 142.500
## 229 Prof A 16 11 Male 88.175
## 145 Prof B 27 27 Male 112.696
## 331 Prof B 49 60 Male 192.253
## 129 Prof A 32 30 Male 113.278
## 76 AsstProf B 8 3 Male 73.266
## 80 AsstProf B 6 2 Male 84.240
## 209 AsstProf B 7 2 Male 91.300
## 153 Prof B 21 9 Male 111.168
## 212 Prof B 39 39 Male 111.350
## 233 Prof A 38 19 Male 148.750
## 328 Prof B 37 37 Male 151.650
## 40 AssocProf B 9 9 Male 100.938
## 199 Prof B 34 33 Male 189.409
## 187 AssocProf B 13 10 Female 103.750
## 114 Prof A 37 37 Male 104.279
## 261 AssocProf A 41 33 Male 88.600
## 225 Prof A 38 35 Male 87.800
## 208 Prof B 18 18 Male 120.000
## 198 AsstProf B 4 4 Male 92.000
## 210 Prof B 20 20 Male 163.200
## 257 Prof A 22 22 Male 140.300
## 366 Prof A 43 40 Male 101.036
## 82 Prof B 17 16 Male 135.585
## 276 Prof A 12 6 Male 93.000
## 393 Prof A 33 30 Male 103.106
## 27 Prof A 35 23 Male 134.885
## 332 Prof B 20 9 Male 116.518
## 297 Prof A 18 18 Male 126.300
## 394 Prof A 31 19 Male 150.564
## 365 Prof A 43 43 Male 205.500
## 53 AsstProf B 11 3 Female 74.692
## 355 AsstProf B 8 1 Male 83.600
## 228 AssocProf A 9 7 Male 70.000
## 87 Prof B 37 37 Male 152.708
## 164 AsstProf B 3 3 Male 89.942
## 39 Prof B 41 31 Male 125.196
## 149 Prof B 36 26 Female 144.651
## 73 Prof B 29 19 Male 100.131
## 287 Prof A 28 27 Male 115.800
## 141 AssocProf A 14 8 Male 100.102
## 143 Prof A 19 11 Male 106.608
## 175 AssocProf B 17 6 Male 105.000
## 117 Prof A 30 29 Male 148.500
## 10 Prof B 18 18 Female 129.000
## 364 AssocProf A 20 17 Male 81.285
## 286 AssocProf A 49 49 Male 81.800
## 74 Prof B 35 34 Male 92.391
## 152 AsstProf B 4 4 Male 92.000
## 19 Prof A 37 23 Male 124.750
## 64 AssocProf B 11 11 Female 103.613
## 242 Prof A 31 30 Male 122.875
## 227 AsstProf A 3 1 Male 63.900
## 335 AssocProf B 19 6 Female 104.542
## 271 Prof A 42 40 Male 143.250
## 43 Prof B 40 27 Male 101.299
## 72 Prof B 45 45 Male 146.856
## 336 Prof B 36 38 Male 151.445
## 236 Prof A 28 17 Male 81.700
## 55 AssocProf B 12 11 Male 103.760
## 142 AssocProf A 15 10 Male 81.500
## 103 Prof B 16 5 Male 153.303
## 32 AsstProf B 7 2 Male 79.916
## 165 AsstProf B 1 0 Male 88.795
## 389 Prof A 38 36 Male 119.450
## 222 Prof B 23 10 Male 145.200
## 338 Prof B 13 12 Male 145.000
## 354 Prof B 22 20 Male 138.000
## 230 Prof A 39 38 Male 133.900
## 321 Prof B 24 23 Male 104.428
## 383 AssocProf A 8 5 Male 86.895
## 20 Prof A 39 36 Female 137.000
## 56 AssocProf B 14 5 Male 83.900
## 115 Prof A 12 0 Female 105.000
## 120 AsstProf A 5 3 Female 73.500
## 377 AsstProf A 4 1 Male 74.856
## 86 Prof B 15 14 Male 132.825
## 17 Prof B 19 20 Male 101.000
## 382 Prof A 27 23 Male 172.505
## 127 Prof A 28 26 Male 155.500
## 93 AssocProf B 10 7 Male 105.631
## 333 Prof B 18 10 Female 105.450
## 200 Prof B 38 22 Male 114.500
## 293 Prof A 39 9 Male 183.800
## 329 AssocProf B 10 10 Male 99.247
## 256 AssocProf A 12 8 Male 83.000
## 110 Prof A 40 31 Male 131.205
## 362 Prof A 23 15 Female 109.646
## 369 Prof A 35 30 Male 131.950
## 356 Prof B 25 21 Male 145.028
## 380 AssocProf A 11 8 Male 104.121
## 97 AssocProf B 17 12 Male 95.611
## 163 AssocProf B 22 7 Male 98.510
## 296 Prof A 40 36 Male 97.150
## 196 AssocProf B 9 7 Male 113.600
## 192 Prof B 43 22 Male 133.700
## 372 Prof A 23 20 Male 110.515
## 96 AsstProf B 4 0 Male 84.000
## 2 Prof B 20 16 Male 173.200
## 37 Prof B 22 21 Male 155.750
## 302 Prof A 27 16 Male 127.100
## 385 Prof A 27 21 Male 125.192
## 249 Prof A 28 23 Male 128.800
## 111 Prof A 20 16 Male 112.429
## 378 AsstProf A 6 3 Male 77.081
## 373 Prof A 12 7 Male 109.707
## 159 AssocProf B 6 6 Male 95.408
## 191 Prof B 22 9 Male 180.000
## 268 Prof A 14 10 Male 104.350
## 294 AssocProf A 11 1 Male 104.800
## 232 AssocProf A 26 24 Female 73.300
## 150 AsstProf B 4 3 Male 95.079
## 334 Prof B 33 19 Male 145.098
## 21 Prof A 31 26 Male 89.565
## 339 Prof B 32 25 Male 128.464
## 69 Prof B 17 17 Female 111.512
## 70 Prof B 28 36 Male 91.412
## 300 AssocProf A 45 39 Male 70.700
## 283 Prof A 51 51 Male 57.800
## 84 AsstProf B 6 2 Male 88.825
## 34 AsstProf B 4 2 Male 80.225
## 312 Prof A 14 9 Male 108.100
## 11 AssocProf B 12 8 Male 119.800
## 85 Prof B 17 18 Female 122.960
## 33 Prof B 13 9 Male 117.256
## 186 Prof B 33 30 Male 134.000
## 190 Prof B 25 19 Male 153.750
## 95 Prof B 21 20 Male 123.683
## 78 Prof B 26 19 Male 193.000
## 284 Prof A 45 43 Male 155.865
## 248 Prof A 21 18 Male 101.100
## 392 Prof A 30 19 Male 151.292
## 368 AssocProf A 10 1 Male 108.413
## 214 Prof B 26 19 Male 126.200
## 289 Prof A 29 27 Male 150.500
## 316 AsstProf B 6 3 Male 84.716
## 90 AssocProf B 9 7 Male 107.008
## 357 Prof A 49 40 Male 88.709
## 201 AsstProf B 4 4 Male 92.700
## 311 Prof A 20 7 Male 92.050
## 60 AsstProf B 8 3 Male 75.044
## 113 AsstProf A 3 1 Male 72.500
## 14 AsstProf B 2 0 Male 78.000
## 134 AsstProf A 3 1 Female 72.500
## 182 Prof B 18 5 Male 141.136
## 390 Prof A 33 18 Male 186.023
## 102 Prof B 28 23 Male 126.933
## 119 AsstProf A 4 1 Male 72.500
## 13 AsstProf B 1 1 Male 77.700
## 83 Prof B 22 20 Male 144.640
## 203 Prof B 28 17 Male 160.400
## 237 Prof A 25 25 Male 114.000
## 258 AssocProf A 30 23 Male 74.000
## 272 Prof A 42 18 Male 194.800
## 174 Prof B 20 20 Male 134.185
Salary_test <- Salary[-training_index, ]
Salary_test
## rank discipline yrs.since.phd yrs.service sex salary
## 7 Prof B 30 23 Male 175.000
## 9 Prof B 21 20 Male 119.250
## 18 Prof A 38 34 Male 103.450
## 22 Prof A 36 31 Male 102.580
## 24 Prof A 24 19 Male 113.068
## 25 AssocProf A 13 8 Female 74.830
## 38 AsstProf B 7 4 Male 86.373
## 45 Prof B 19 19 Male 94.384
## 46 Prof B 25 15 Male 114.778
## 49 Prof B 25 25 Female 140.096
## 57 Prof B 23 21 Male 117.704
## 61 AssocProf B 9 8 Male 90.304
## 63 Prof B 33 31 Male 109.785
## 67 Prof B 22 12 Male 101.000
## 68 Prof B 35 31 Male 99.418
## 77 Prof B 17 3 Male 150.480
## 81 Prof B 43 28 Male 150.743
## 88 AsstProf B 2 2 Male 88.400
## 98 Prof B 13 7 Male 129.676
## 100 Prof B 41 26 Male 106.689
## 101 Prof B 42 25 Male 133.217
## 109 AssocProf A 15 8 Male 81.500
## 112 AssocProf A 19 16 Male 82.100
## 121 Prof A 14 14 Male 115.313
## 123 Prof A 24 22 Male 97.262
## 137 Prof A 16 14 Male 108.262
## 162 Prof B 26 19 Male 176.500
## 167 Prof B 16 16 Male 167.284
## 168 Prof B 18 19 Male 130.664
## 173 Prof B 37 24 Male 93.164
## 179 Prof B 27 14 Male 147.349
## 183 AssocProf B 8 8 Male 100.000
## 188 Prof B 18 10 Male 107.500
## 195 AssocProf B 48 53 Male 90.000
## 197 AsstProf B 4 4 Male 92.700
## 204 Prof B 17 17 Male 152.500
## 205 Prof B 19 5 Male 165.000
## 215 AssocProf B 11 1 Male 118.700
## 217 Prof B 15 11 Male 146.000
## 218 AssocProf B 29 22 Male 105.350
## 220 Prof B 13 11 Male 119.500
## 223 AssocProf B 13 6 Male 107.150
## 231 Prof A 29 27 Female 91.000
## 239 Prof A 46 40 Male 77.202
## 243 Prof A 38 37 Male 102.600
## 244 Prof A 23 23 Male 108.200
## 245 Prof A 19 23 Male 84.273
## 247 Prof A 30 23 Male 91.100
## 251 Prof A 39 39 Male 109.000
## 253 Prof A 31 12 Male 132.000
## 254 AsstProf A 4 2 Female 77.500
## 264 Prof A 31 31 Male 126.000
## 269 Prof A 47 44 Male 89.650
## 277 Prof A 52 48 Male 107.200
## 280 Prof A 46 46 Male 100.600
## 282 Prof A 37 27 Male 103.600
## 288 AsstProf A 2 0 Male 85.000
## 290 AsstProf A 8 5 Male 74.000
## 292 Prof A 32 28 Male 168.500
## 299 Prof A 49 43 Male 72.300
## 303 Prof A 28 13 Male 170.500
## 307 AsstProf A 7 4 Male 74.500
## 310 Prof A 22 15 Male 166.800
## 313 Prof A 29 19 Male 94.350
## 315 Prof A 22 6 Male 146.800
## 320 Prof B 16 15 Male 135.027
## 337 Prof B 35 23 Male 98.053
## 341 Prof B 13 11 Male 106.231
## 344 Prof B 31 31 Male 162.150
## 346 Prof B 15 10 Male 107.986
## 351 Prof B 56 49 Male 186.960
## 358 Prof A 39 35 Male 107.309
## 359 Prof A 28 14 Female 109.954
## 370 Prof A 33 31 Male 134.690
## 376 Prof A 28 26 Male 103.649
## 381 AsstProf A 8 3 Male 75.996
## 387 Prof A 29 27 Male 139.219
## 388 Prof A 29 15 Male 109.305
## 397 AsstProf A 8 4 Male 81.035
model_full;
fit a null (linear) model (no predictor, only an intercept), and name it
as model_null. Display the summary of both the models. (1
points)model_full <- lm(salary ~ ., data = Salary_train)
summary(model_full)
##
## Call:
## lm(formula = salary ~ ., data = Salary_train)
##
## Residuals:
## Min 1Q Median 3Q Max
## -68.809 -13.091 -1.886 9.832 96.874
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 78.0937 5.3963 14.472 < 2e-16 ***
## rankAsstProf -12.7503 4.4293 -2.879 0.00427 **
## rankProf 32.0951 3.8978 8.234 5.06e-15 ***
## disciplineB 13.9132 2.6141 5.322 1.96e-07 ***
## yrs.since.phd 0.5790 0.2697 2.147 0.03256 *
## yrs.service -0.4192 0.2329 -1.800 0.07278 .
## sexMale 4.4979 4.1136 1.093 0.27506
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 22.32 on 311 degrees of freedom
## Multiple R-squared: 0.4817, Adjusted R-squared: 0.4717
## F-statistic: 48.17 on 6 and 311 DF, p-value: < 2.2e-16
model_null <- lm(salary ~ 1, data = Salary_train)
summary(model_null)
##
## Call:
## lm(formula = salary ~ 1, data = Salary_train)
##
## Residuals:
## Min 1Q Median 3Q Max
## -55.804 -23.331 -6.404 20.854 117.941
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 113.604 1.722 65.98 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 30.7 on 317 degrees of freedom
discipline, and the
coefficient of yrs.service. What do they tell us about the
relationship between these predictors and salary? (1
points)Discipline: for every 1 unit increase in discipline, the salary will go up by 13.92 thousand (since the numbers are in thousands) Yrs.Service: for every 1 year of service added on, the salary will decrease by .5283 thousand dollars
model_step_BIC. Which variables are
selected in the final model? (1 points)model_step_BIC <- step(model_null, scope = list(lower = model_null, upper = model_full),
direction = "both", trace = F, k = log(nrow(Salary_train)))
model_step_BIC
##
## Call:
## lm(formula = salary ~ rank + discipline, data = Salary_train)
##
## Coefficients:
## (Intercept) rankAsstProf rankProf disciplineB
## 86.39 -14.53 35.35 12.70
The variables used in the final model are salary (response variable), then rank and discipline as predictor variables.
model_full and
model_step_BIC. Based on this results, which model performs
better in prediction? (1 points)out_MSE <- predict(model_full, newdata = Salary_test)
out_MSE
## 7 9 18 22 24 25 38 45
## 136.32745 132.37421 122.43468 122.53437 120.61717 82.26676 86.13046 131.63546
## 46 49 57 61 63 67 68 77
## 136.78628 128.09620 133.11297 98.36189 134.71063 136.30698 135.86861 137.18504
## 81 88 98 100 101 109 112 121
## 141.75819 84.07396 133.19219 141.43866 142.43687 87.92260 86.88477 116.92339
## 123 137 162 167 168 173 179 183
## 119.35950 118.08137 135.68838 131.15616 131.05647 139.96115 138.36348 97.78290
## 188 195 197 204 205 215 217 218
## 134.82947 102.07744 84.39350 131.31592 137.50458 102.45443 132.67328 104.07255
## 220 223 231 239 243 244 245 247
## 131.51530 101.51629 115.66048 124.55125 121.17701 118.36129 116.04533 122.41421
## 251 253 254 264 269 277 280 282
## 120.91755 127.60466 66.82086 119.63942 123.45335 124.67141 122.03592 124.79025
## 288 290 292 299 303 307 310 313
## 70.99918 72.37700 121.47608 125.03055 125.44847 72.21723 121.13608 123.51212
## 315 320 337 341 344 346 351 358
## 124.90909 131.57538 139.22239 131.51530 133.55265 133.09250 140.48137 122.59444
## 359 370 376 381 387 388 397
## 120.53139 120.79740 119.99857 73.21545 120.15833 125.18901 72.79622
mean((Salary$salary - out_MSE)^2)
## Warning in Salary$salary - out_MSE: longer object length is not a multiple of
## shorter object length
## [1] 1286.308
out_MSE_BIC <- predict(model_step_BIC, newdata = Salary_test)
out_MSE_BIC
## 7 9 18 22 24 25 38 45
## 134.44890 134.44890 121.74422 121.74422 121.74422 86.39288 84.57192 134.44890
## 46 49 57 61 63 67 68 77
## 134.44890 134.44890 134.44890 99.09756 134.44890 134.44890 134.44890 134.44890
## 81 88 98 100 101 109 112 121
## 134.44890 84.57192 134.44890 134.44890 134.44890 86.39288 86.39288 121.74422
## 123 137 162 167 168 173 179 183
## 121.74422 121.74422 134.44890 134.44890 134.44890 134.44890 134.44890 99.09756
## 188 195 197 204 205 215 217 218
## 134.44890 99.09756 84.57192 134.44890 134.44890 99.09756 134.44890 99.09756
## 220 223 231 239 243 244 245 247
## 134.44890 99.09756 121.74422 121.74422 121.74422 121.74422 121.74422 121.74422
## 251 253 254 264 269 277 280 282
## 121.74422 121.74422 71.86724 121.74422 121.74422 121.74422 121.74422 121.74422
## 288 290 292 299 303 307 310 313
## 71.86724 71.86724 121.74422 121.74422 121.74422 71.86724 121.74422 121.74422
## 315 320 337 341 344 346 351 358
## 121.74422 134.44890 134.44890 134.44890 134.44890 134.44890 134.44890 121.74422
## 359 370 376 381 387 388 397
## 121.74422 121.74422 121.74422 71.86724 121.74422 121.74422 71.86724
mean((Salary$salary - out_MSE_BIC)^2)
## Warning in Salary$salary - out_MSE_BIC: longer object length is not a multiple
## of shorter object length
## [1] 1260.251
model_full out-of-sample: 1343.771 model_step_BIC out-of-sample: 1326.16
End of Exam. Please submit this RMD file along with a knitted HTML report.