Instructions

This is the R portion of your midterm exam. You will analyze the Salary dataset, which contains information salary for Assistant Professors, Associate Professors and Professors in a college in the U.S in 2008-2009. For each of the variables, please check the code book here:

I’ve reviewed this dataset, and confirmed that there is no missing values.

Please follow the instructions carefully and write your R code in the provided chunks. You will be graded on the correctness of your code, the quality of your analysis, and your interpretation of the results.

Total points: 10

Good luck!

1. Data Import and Exploration (2 points)

  1. Import the Salary dataset provided on Canvas, named it as Salary, and display the first few rows. (1 points)
Salary <- read.csv("salaries.csv")
head(Salary, n = 5)
##       rank discipline yrs.since.phd yrs.service  sex salary
## 1     Prof          B            19          18 Male 139.75
## 2     Prof          B            20          16 Male 173.20
## 3 AsstProf          B             4           3 Male  79.75
## 4     Prof          B            45          39 Male 115.00
## 5     Prof          B            40          41 Male 141.50
  1. Use appropriate R functions to display the structure of the dataset and report how many observations and variables are in the dataset? Among these variables, how many of them are numeric? (1 points)
str(Salary)
## 'data.frame':    397 obs. of  6 variables:
##  $ rank         : chr  "Prof" "Prof" "AsstProf" "Prof" ...
##  $ discipline   : chr  "B" "B" "B" "B" ...
##  $ yrs.since.phd: int  19 20 4 45 40 6 30 45 21 18 ...
##  $ yrs.service  : int  18 16 3 39 41 6 23 45 20 18 ...
##  $ sex          : chr  "Male" "Male" "Male" "Male" ...
##  $ salary       : num  139.8 173.2 79.8 115 141.5 ...

There are 397 observations and 6 variables. Among these, 3 are numeric and 3 are categorical.

2. Data Preprocessing and Visualization (3 points)

  1. Rename the variables to snake case (like “snake_case”) (1 points)
snake_case <-  Salary$yrs.since.phd
snake_case1 <- Salary$yrs.service
  1. Please create frequency tables for variable rank and discipline. (How many AsstProf, AssocProf, and Prof; and how many of them are in theoretical departments and how many in applied departments). (1)
table(Salary$rank)
## 
## AssocProf  AsstProf      Prof 
##        64        67       266
table(Salary$discipline)
## 
##   A   B 
## 181 216

Assistant Prof: 67. Associate Prof: 64. Prof: 266 Theoretical: 181. Applied: 216

  1. Create a box plot of ‘salary’ vs ‘rank’ (you can use plot() or ggplot()). Add a title and proper axis labels. You don’t need to interpret the result here but you should know how. (1 points)
library(ggplot2)
ggplot(data = Salary, aes(y = salary, x = rank)) +
  geom_boxplot() +
  labs(title = "Salary vs Rank", x = "Rank", y = "Salary (1000s)")

3. Linear Regression Analysis (5 points)

  1. Split the data into training data (80%) and testing data (20%), and name them as Salary_train and Salary_test. A part of the code was given, please finish it. (1 points)
training_index <- sample(1:nrow(Salary), round(0.8 * nrow(Salary)))
Salary_train <- Salary[training_index, ]
Salary_train
##          rank discipline yrs.since.phd yrs.service    sex  salary
## 274  AsstProf          A             8           4   Male  74.000
## 375      Prof          A            27          19   Male 103.275
## 263      Prof          A            31          26   Male 121.200
## 285 AssocProf          A             8           6   Male  88.650
## 181      Prof          B            11          11   Male 142.467
## 30       Prof          B            12           8   Male 118.223
## 160      Prof          B            15          16   Male 137.167
## 367      Prof          A            15          10   Male 115.435
## 166      Prof          B            21           8   Male 105.890
## 44       Prof          B            38          38   Male 231.545
## 213      Prof          B            15           7   Male 128.400
## 266      Prof          A            36          30   Male 134.800
## 363      Prof          A            30          30   Male 138.771
## 139 AssocProf          A            10           7   Male  73.877
## 278      Prof          A            31          27   Male 163.200
## 298      Prof          A            17          11   Male 148.800
## 12   AsstProf          B             7           2   Male  79.800
## 279      Prof          A            24          18   Male 107.100
## 62   AsstProf          B             3           2   Male  75.243
## 224      Prof          B            34          20   Male 129.600
## 342      Prof          B            17          17 Female 124.312
## 206      Prof          B            21           2   Male  96.545
## 317 AssocProf          B            12           9 Female  71.065
## 135      Prof          A            35          25   Male 168.635
## 267      Prof          A            43          43   Male 143.940
## 171  AsstProf          B             5           5   Male  91.227
## 281      Prof          A            39          38   Male 136.500
## 185      Prof          B            23          23   Male 101.000
## 91   AsstProf          B            10           5 Female  97.032
## 326  AsstProf          B             8           4   Male  84.500
## 140      Prof          A            21          18   Male 152.664
## 23       Prof          A            34          30   Male  93.904
## 35   AsstProf          B             4           2 Female  80.225
## 3    AsstProf          B             4           3   Male  79.750
## 151      Prof          B            14          12   Male 128.148
## 124 AssocProf          A            25          22 Female  62.884
## 309  AsstProf          A             5           0   Male  74.000
## 4        Prof          B            45          39   Male 115.000
## 116      Prof          A            21           9   Male 120.806
## 319      Prof          B            16          16   Male 134.550
## 234      Prof          A            36          19 Female 117.555
## 146      Prof          B            28          28   Male 119.015
## 75       Prof          B            28          23   Male 113.398
## 16       Prof          B            12           3   Male 117.150
## 147  AsstProf          B             4           4   Male  92.000
## 270      Prof          A            13           7   Male 103.700
## 144  AsstProf          B             3           3   Male  89.942
## 92  AssocProf          B            10           7   Male 105.128
## 361      Prof          A            14          11   Male 121.946
## 379      Prof          A            38          38   Male 150.680
## 118      Prof          A            39          36   Male 117.515
## 47       Prof          B            40          28   Male  98.193
## 384      Prof          A            44          44   Male 105.000
## 322 AssocProf          B             9           9   Male  95.642
## 99       Prof          B            30          14   Male 102.235
## 330      Prof          B            23          23   Male 134.778
## 216      Prof          B            16          11   Male 145.350
## 104      Prof          B            20          14 Female 127.512
## 138      Prof          A            17          14   Male 105.668
## 105 AssocProf          A            18          10   Male  83.850
## 391      Prof          A            40          19   Male 166.605
## 252      Prof          A            20           8   Male 102.000
## 250      Prof          A            29           7   Male 204.000
## 255      Prof          A            28           7 Female 116.450
## 130  AsstProf          A             4           2   Male  73.000
## 193      Prof          B            19          18   Male 122.100
## 122      Prof          A            32          32   Male 124.309
## 108 AssocProf          A            10           8   Male  82.600
## 5        Prof          B            40          41   Male 141.500
## 345      Prof          B            32          35   Male 150.376
## 71       Prof          B            17           2   Male 126.320
## 65   AsstProf          B             4           3   Male  68.404
## 158  AsstProf          B             1           0   Male  88.000
## 238  AsstProf          A             7           6 Female  63.100
## 325      Prof          B            30          31   Male 162.221
## 41       Prof          B            23           2   Male 146.500
## 202      Prof          B            40          40   Male 119.700
## 136      Prof          A            20          18   Male 136.000
## 304      Prof          A            14           4   Male 105.260
## 305      Prof          A            46          44   Male 144.050
## 265      Prof          A            37          35   Male  99.000
## 6   AssocProf          B             6           6   Male  97.000
## 169 AssocProf          B             8           6   Male 101.210
## 194 AssocProf          B            19          19   Male  86.250
## 184      Prof          B            26          22   Male 150.000
## 178 AssocProf          B            13           9   Male 100.944
## 36   AsstProf          B             5           0 Female  77.000
## 89       Prof          B            25          25   Male 172.272
## 273  AsstProf          A             4           1   Male  73.000
## 28   AsstProf          B             5           3   Male  82.379
## 26       Prof          A            21           8   Male 106.294
## 31       Prof          B            20           4   Male 132.261
## 349  AsstProf          B             4           3   Male  80.139
## 1        Prof          B            19          18   Male 139.750
## 226      Prof          A            20          20   Male 122.400
## 8        Prof          B            45          45   Male 147.765
## 106      Prof          A            31          28   Male 113.543
## 295      Prof          A            19           7   Male 107.300
## 176      Prof          B            28          25   Male 111.751
## 262      Prof          A            45          45   Male 107.550
## 154 AssocProf          B            12          10 Female 103.994
## 221      Prof          B            21          21   Male 170.000
## 308      Prof          A            31          28   Male 122.500
## 240      Prof          A            19           6   Male  96.200
## 132      Prof          A            56          57   Male  76.840
## 207      Prof          B            35          33   Male 162.200
## 371 AssocProf          A            13           8   Male  78.182
## 128  AsstProf          A             2           0 Female  72.500
## 275  AsstProf          A             8           3 Female  78.500
## 360  AsstProf          A            11           4   Male  78.785
## 172      Prof          B            19          19   Male 151.575
## 211  AsstProf          B             4           3   Male  91.000
## 79   AsstProf          B             3           1   Male  86.100
## 180  AsstProf          B             3           3 Female  92.000
## 52       Prof          B            12          11   Male 108.875
## 58  AssocProf          B             9           8   Male  90.215
## 323 AssocProf          B            13          11   Male 126.431
## 259  AsstProf          A             9           3   Male  73.800
## 219 AssocProf          B            14           7 Female 109.650
## 314      Prof          A            35          35   Male 100.351
## 161  AsstProf          B             2           2   Male  89.516
## 327      Prof          B            23          15   Male 124.714
## 374      Prof          A            30          26   Male 136.660
## 350      Prof          B            27          28   Male 144.309
## 51       Prof          B            28          28   Male 126.621
## 157 AssocProf          B            12          18   Male 113.341
## 125      Prof          A            24          22   Male  96.614
## 246      Prof          A            17          11 Female  90.450
## 15       Prof          B            20          18   Male 104.800
## 352      Prof          B            38          38   Male  93.519
## 126      Prof          A            54          49   Male  78.162
## 291      Prof          A            33           7   Male 174.500
## 155  AsstProf          B             4           0   Male  92.000
## 66  AssocProf          B             9           8   Male 100.522
## 189 AssocProf          B            28          28   Male 106.300
## 318      Prof          B            46          45   Male  67.559
## 241  AsstProf          A             5           3   Male  69.200
## 94       Prof          B            38          38   Male 166.024
## 148      Prof          B            27          27   Male 156.938
## 343      Prof          B            38          38   Male 114.596
## 395      Prof          A            42          25   Male 101.738
## 235  AsstProf          A             8           3   Male  69.700
## 396      Prof          A            25          15   Male  95.329
## 170      Prof          B            25          18   Male 181.257
## 324      Prof          B            24          15 Female 161.101
## 306      Prof          A            33          31   Male 111.350
## 348      Prof          B            39          33   Male 128.250
## 177 AssocProf          B            10           7   Male  95.436
## 59  AssocProf          B            10           9   Male 100.135
## 133 AssocProf          A            10           8 Female  77.500
## 54       Prof          B            16           9   Male 106.639
## 131 AssocProf          A            11           9   Male  83.001
## 347      Prof          B            41          27   Male 142.023
## 29   AsstProf          B            11           0   Male  77.000
## 48       Prof          B            23          19 Female 151.768
## 386      Prof          A            15           9   Male 114.330
## 301      Prof          A            39          36   Male  88.600
## 340      Prof          B            37          15   Male 137.317
## 156      Prof          B            21          21   Male 118.971
## 50   AsstProf          B             1           1   Male  70.768
## 42  AssocProf          B            23          23   Male  93.418
## 260      Prof          A            32          30   Male  92.550
## 107 AssocProf          A            11           8   Male  82.099
## 353      Prof          B            26          27   Male 142.500
## 229      Prof          A            16          11   Male  88.175
## 145      Prof          B            27          27   Male 112.696
## 331      Prof          B            49          60   Male 192.253
## 129      Prof          A            32          30   Male 113.278
## 76   AsstProf          B             8           3   Male  73.266
## 80   AsstProf          B             6           2   Male  84.240
## 209  AsstProf          B             7           2   Male  91.300
## 153      Prof          B            21           9   Male 111.168
## 212      Prof          B            39          39   Male 111.350
## 233      Prof          A            38          19   Male 148.750
## 328      Prof          B            37          37   Male 151.650
## 40  AssocProf          B             9           9   Male 100.938
## 199      Prof          B            34          33   Male 189.409
## 187 AssocProf          B            13          10 Female 103.750
## 114      Prof          A            37          37   Male 104.279
## 261 AssocProf          A            41          33   Male  88.600
## 225      Prof          A            38          35   Male  87.800
## 208      Prof          B            18          18   Male 120.000
## 198  AsstProf          B             4           4   Male  92.000
## 210      Prof          B            20          20   Male 163.200
## 257      Prof          A            22          22   Male 140.300
## 366      Prof          A            43          40   Male 101.036
## 82       Prof          B            17          16   Male 135.585
## 276      Prof          A            12           6   Male  93.000
## 393      Prof          A            33          30   Male 103.106
## 27       Prof          A            35          23   Male 134.885
## 332      Prof          B            20           9   Male 116.518
## 297      Prof          A            18          18   Male 126.300
## 394      Prof          A            31          19   Male 150.564
## 365      Prof          A            43          43   Male 205.500
## 53   AsstProf          B            11           3 Female  74.692
## 355  AsstProf          B             8           1   Male  83.600
## 228 AssocProf          A             9           7   Male  70.000
## 87       Prof          B            37          37   Male 152.708
## 164  AsstProf          B             3           3   Male  89.942
## 39       Prof          B            41          31   Male 125.196
## 149      Prof          B            36          26 Female 144.651
## 73       Prof          B            29          19   Male 100.131
## 287      Prof          A            28          27   Male 115.800
## 141 AssocProf          A            14           8   Male 100.102
## 143      Prof          A            19          11   Male 106.608
## 175 AssocProf          B            17           6   Male 105.000
## 117      Prof          A            30          29   Male 148.500
## 10       Prof          B            18          18 Female 129.000
## 364 AssocProf          A            20          17   Male  81.285
## 286 AssocProf          A            49          49   Male  81.800
## 74       Prof          B            35          34   Male  92.391
## 152  AsstProf          B             4           4   Male  92.000
## 19       Prof          A            37          23   Male 124.750
## 64  AssocProf          B            11          11 Female 103.613
## 242      Prof          A            31          30   Male 122.875
## 227  AsstProf          A             3           1   Male  63.900
## 335 AssocProf          B            19           6 Female 104.542
## 271      Prof          A            42          40   Male 143.250
## 43       Prof          B            40          27   Male 101.299
## 72       Prof          B            45          45   Male 146.856
## 336      Prof          B            36          38   Male 151.445
## 236      Prof          A            28          17   Male  81.700
## 55  AssocProf          B            12          11   Male 103.760
## 142 AssocProf          A            15          10   Male  81.500
## 103      Prof          B            16           5   Male 153.303
## 32   AsstProf          B             7           2   Male  79.916
## 165  AsstProf          B             1           0   Male  88.795
## 389      Prof          A            38          36   Male 119.450
## 222      Prof          B            23          10   Male 145.200
## 338      Prof          B            13          12   Male 145.000
## 354      Prof          B            22          20   Male 138.000
## 230      Prof          A            39          38   Male 133.900
## 321      Prof          B            24          23   Male 104.428
## 383 AssocProf          A             8           5   Male  86.895
## 20       Prof          A            39          36 Female 137.000
## 56  AssocProf          B            14           5   Male  83.900
## 115      Prof          A            12           0 Female 105.000
## 120  AsstProf          A             5           3 Female  73.500
## 377  AsstProf          A             4           1   Male  74.856
## 86       Prof          B            15          14   Male 132.825
## 17       Prof          B            19          20   Male 101.000
## 382      Prof          A            27          23   Male 172.505
## 127      Prof          A            28          26   Male 155.500
## 93  AssocProf          B            10           7   Male 105.631
## 333      Prof          B            18          10 Female 105.450
## 200      Prof          B            38          22   Male 114.500
## 293      Prof          A            39           9   Male 183.800
## 329 AssocProf          B            10          10   Male  99.247
## 256 AssocProf          A            12           8   Male  83.000
## 110      Prof          A            40          31   Male 131.205
## 362      Prof          A            23          15 Female 109.646
## 369      Prof          A            35          30   Male 131.950
## 356      Prof          B            25          21   Male 145.028
## 380 AssocProf          A            11           8   Male 104.121
## 97  AssocProf          B            17          12   Male  95.611
## 163 AssocProf          B            22           7   Male  98.510
## 296      Prof          A            40          36   Male  97.150
## 196 AssocProf          B             9           7   Male 113.600
## 192      Prof          B            43          22   Male 133.700
## 372      Prof          A            23          20   Male 110.515
## 96   AsstProf          B             4           0   Male  84.000
## 2        Prof          B            20          16   Male 173.200
## 37       Prof          B            22          21   Male 155.750
## 302      Prof          A            27          16   Male 127.100
## 385      Prof          A            27          21   Male 125.192
## 249      Prof          A            28          23   Male 128.800
## 111      Prof          A            20          16   Male 112.429
## 378  AsstProf          A             6           3   Male  77.081
## 373      Prof          A            12           7   Male 109.707
## 159 AssocProf          B             6           6   Male  95.408
## 191      Prof          B            22           9   Male 180.000
## 268      Prof          A            14          10   Male 104.350
## 294 AssocProf          A            11           1   Male 104.800
## 232 AssocProf          A            26          24 Female  73.300
## 150  AsstProf          B             4           3   Male  95.079
## 334      Prof          B            33          19   Male 145.098
## 21       Prof          A            31          26   Male  89.565
## 339      Prof          B            32          25   Male 128.464
## 69       Prof          B            17          17 Female 111.512
## 70       Prof          B            28          36   Male  91.412
## 300 AssocProf          A            45          39   Male  70.700
## 283      Prof          A            51          51   Male  57.800
## 84   AsstProf          B             6           2   Male  88.825
## 34   AsstProf          B             4           2   Male  80.225
## 312      Prof          A            14           9   Male 108.100
## 11  AssocProf          B            12           8   Male 119.800
## 85       Prof          B            17          18 Female 122.960
## 33       Prof          B            13           9   Male 117.256
## 186      Prof          B            33          30   Male 134.000
## 190      Prof          B            25          19   Male 153.750
## 95       Prof          B            21          20   Male 123.683
## 78       Prof          B            26          19   Male 193.000
## 284      Prof          A            45          43   Male 155.865
## 248      Prof          A            21          18   Male 101.100
## 392      Prof          A            30          19   Male 151.292
## 368 AssocProf          A            10           1   Male 108.413
## 214      Prof          B            26          19   Male 126.200
## 289      Prof          A            29          27   Male 150.500
## 316  AsstProf          B             6           3   Male  84.716
## 90  AssocProf          B             9           7   Male 107.008
## 357      Prof          A            49          40   Male  88.709
## 201  AsstProf          B             4           4   Male  92.700
## 311      Prof          A            20           7   Male  92.050
## 60   AsstProf          B             8           3   Male  75.044
## 113  AsstProf          A             3           1   Male  72.500
## 14   AsstProf          B             2           0   Male  78.000
## 134  AsstProf          A             3           1 Female  72.500
## 182      Prof          B            18           5   Male 141.136
## 390      Prof          A            33          18   Male 186.023
## 102      Prof          B            28          23   Male 126.933
## 119  AsstProf          A             4           1   Male  72.500
## 13   AsstProf          B             1           1   Male  77.700
## 83       Prof          B            22          20   Male 144.640
## 203      Prof          B            28          17   Male 160.400
## 237      Prof          A            25          25   Male 114.000
## 258 AssocProf          A            30          23   Male  74.000
## 272      Prof          A            42          18   Male 194.800
## 174      Prof          B            20          20   Male 134.185
Salary_test <- Salary[-training_index, ]
Salary_test
##          rank discipline yrs.since.phd yrs.service    sex  salary
## 7        Prof          B            30          23   Male 175.000
## 9        Prof          B            21          20   Male 119.250
## 18       Prof          A            38          34   Male 103.450
## 22       Prof          A            36          31   Male 102.580
## 24       Prof          A            24          19   Male 113.068
## 25  AssocProf          A            13           8 Female  74.830
## 38   AsstProf          B             7           4   Male  86.373
## 45       Prof          B            19          19   Male  94.384
## 46       Prof          B            25          15   Male 114.778
## 49       Prof          B            25          25 Female 140.096
## 57       Prof          B            23          21   Male 117.704
## 61  AssocProf          B             9           8   Male  90.304
## 63       Prof          B            33          31   Male 109.785
## 67       Prof          B            22          12   Male 101.000
## 68       Prof          B            35          31   Male  99.418
## 77       Prof          B            17           3   Male 150.480
## 81       Prof          B            43          28   Male 150.743
## 88   AsstProf          B             2           2   Male  88.400
## 98       Prof          B            13           7   Male 129.676
## 100      Prof          B            41          26   Male 106.689
## 101      Prof          B            42          25   Male 133.217
## 109 AssocProf          A            15           8   Male  81.500
## 112 AssocProf          A            19          16   Male  82.100
## 121      Prof          A            14          14   Male 115.313
## 123      Prof          A            24          22   Male  97.262
## 137      Prof          A            16          14   Male 108.262
## 162      Prof          B            26          19   Male 176.500
## 167      Prof          B            16          16   Male 167.284
## 168      Prof          B            18          19   Male 130.664
## 173      Prof          B            37          24   Male  93.164
## 179      Prof          B            27          14   Male 147.349
## 183 AssocProf          B             8           8   Male 100.000
## 188      Prof          B            18          10   Male 107.500
## 195 AssocProf          B            48          53   Male  90.000
## 197  AsstProf          B             4           4   Male  92.700
## 204      Prof          B            17          17   Male 152.500
## 205      Prof          B            19           5   Male 165.000
## 215 AssocProf          B            11           1   Male 118.700
## 217      Prof          B            15          11   Male 146.000
## 218 AssocProf          B            29          22   Male 105.350
## 220      Prof          B            13          11   Male 119.500
## 223 AssocProf          B            13           6   Male 107.150
## 231      Prof          A            29          27 Female  91.000
## 239      Prof          A            46          40   Male  77.202
## 243      Prof          A            38          37   Male 102.600
## 244      Prof          A            23          23   Male 108.200
## 245      Prof          A            19          23   Male  84.273
## 247      Prof          A            30          23   Male  91.100
## 251      Prof          A            39          39   Male 109.000
## 253      Prof          A            31          12   Male 132.000
## 254  AsstProf          A             4           2 Female  77.500
## 264      Prof          A            31          31   Male 126.000
## 269      Prof          A            47          44   Male  89.650
## 277      Prof          A            52          48   Male 107.200
## 280      Prof          A            46          46   Male 100.600
## 282      Prof          A            37          27   Male 103.600
## 288  AsstProf          A             2           0   Male  85.000
## 290  AsstProf          A             8           5   Male  74.000
## 292      Prof          A            32          28   Male 168.500
## 299      Prof          A            49          43   Male  72.300
## 303      Prof          A            28          13   Male 170.500
## 307  AsstProf          A             7           4   Male  74.500
## 310      Prof          A            22          15   Male 166.800
## 313      Prof          A            29          19   Male  94.350
## 315      Prof          A            22           6   Male 146.800
## 320      Prof          B            16          15   Male 135.027
## 337      Prof          B            35          23   Male  98.053
## 341      Prof          B            13          11   Male 106.231
## 344      Prof          B            31          31   Male 162.150
## 346      Prof          B            15          10   Male 107.986
## 351      Prof          B            56          49   Male 186.960
## 358      Prof          A            39          35   Male 107.309
## 359      Prof          A            28          14 Female 109.954
## 370      Prof          A            33          31   Male 134.690
## 376      Prof          A            28          26   Male 103.649
## 381  AsstProf          A             8           3   Male  75.996
## 387      Prof          A            29          27   Male 139.219
## 388      Prof          A            29          15   Male 109.305
## 397  AsstProf          A             8           4   Male  81.035
  1. Using ‘salary’ as the response variable, and based on the training data, fit a full (linear) model (using all the other variables as predictors), and name it as model_full; fit a null (linear) model (no predictor, only an intercept), and name it as model_null. Display the summary of both the models. (1 points)
model_full <- lm(salary ~ ., data = Salary_train)
summary(model_full)
## 
## Call:
## lm(formula = salary ~ ., data = Salary_train)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -68.809 -13.091  -1.886   9.832  96.874 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    78.0937     5.3963  14.472  < 2e-16 ***
## rankAsstProf  -12.7503     4.4293  -2.879  0.00427 ** 
## rankProf       32.0951     3.8978   8.234 5.06e-15 ***
## disciplineB    13.9132     2.6141   5.322 1.96e-07 ***
## yrs.since.phd   0.5790     0.2697   2.147  0.03256 *  
## yrs.service    -0.4192     0.2329  -1.800  0.07278 .  
## sexMale         4.4979     4.1136   1.093  0.27506    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 22.32 on 311 degrees of freedom
## Multiple R-squared:  0.4817, Adjusted R-squared:  0.4717 
## F-statistic: 48.17 on 6 and 311 DF,  p-value: < 2.2e-16
model_null <- lm(salary ~ 1, data = Salary_train)
summary(model_null)
## 
## Call:
## lm(formula = salary ~ 1, data = Salary_train)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -55.804 -23.331  -6.404  20.854 117.941 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  113.604      1.722   65.98   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 30.7 on 317 degrees of freedom
  1. Interpret the coefficient of discipline, and the coefficient of yrs.service. What do they tell us about the relationship between these predictors and salary? (1 points)

Discipline: for every 1 unit increase in discipline, the salary will go up by 13.92 thousand (since the numbers are in thousands) Yrs.Service: for every 1 year of service added on, the salary will decrease by .5283 thousand dollars

  1. Conduct a stepwise variable selection using BIC, and name the selected model as model_step_BIC. Which variables are selected in the final model? (1 points)
model_step_BIC <- step(model_null, scope = list(lower = model_null, upper = model_full), 
                           direction = "both", trace = F, k = log(nrow(Salary_train)))
model_step_BIC
## 
## Call:
## lm(formula = salary ~ rank + discipline, data = Salary_train)
## 
## Coefficients:
##  (Intercept)  rankAsstProf      rankProf   disciplineB  
##        86.39        -14.53         35.35         12.70

The variables used in the final model are salary (response variable), then rank and discipline as predictor variables.

  1. Calculate the out-of-sample MSE with model_full and model_step_BIC. Based on this results, which model performs better in prediction? (1 points)
out_MSE <- predict(model_full, newdata = Salary_test)
out_MSE
##         7         9        18        22        24        25        38        45 
## 136.32745 132.37421 122.43468 122.53437 120.61717  82.26676  86.13046 131.63546 
##        46        49        57        61        63        67        68        77 
## 136.78628 128.09620 133.11297  98.36189 134.71063 136.30698 135.86861 137.18504 
##        81        88        98       100       101       109       112       121 
## 141.75819  84.07396 133.19219 141.43866 142.43687  87.92260  86.88477 116.92339 
##       123       137       162       167       168       173       179       183 
## 119.35950 118.08137 135.68838 131.15616 131.05647 139.96115 138.36348  97.78290 
##       188       195       197       204       205       215       217       218 
## 134.82947 102.07744  84.39350 131.31592 137.50458 102.45443 132.67328 104.07255 
##       220       223       231       239       243       244       245       247 
## 131.51530 101.51629 115.66048 124.55125 121.17701 118.36129 116.04533 122.41421 
##       251       253       254       264       269       277       280       282 
## 120.91755 127.60466  66.82086 119.63942 123.45335 124.67141 122.03592 124.79025 
##       288       290       292       299       303       307       310       313 
##  70.99918  72.37700 121.47608 125.03055 125.44847  72.21723 121.13608 123.51212 
##       315       320       337       341       344       346       351       358 
## 124.90909 131.57538 139.22239 131.51530 133.55265 133.09250 140.48137 122.59444 
##       359       370       376       381       387       388       397 
## 120.53139 120.79740 119.99857  73.21545 120.15833 125.18901  72.79622
mean((Salary$salary - out_MSE)^2)
## Warning in Salary$salary - out_MSE: longer object length is not a multiple of
## shorter object length
## [1] 1286.308
out_MSE_BIC <- predict(model_step_BIC, newdata = Salary_test)
out_MSE_BIC
##         7         9        18        22        24        25        38        45 
## 134.44890 134.44890 121.74422 121.74422 121.74422  86.39288  84.57192 134.44890 
##        46        49        57        61        63        67        68        77 
## 134.44890 134.44890 134.44890  99.09756 134.44890 134.44890 134.44890 134.44890 
##        81        88        98       100       101       109       112       121 
## 134.44890  84.57192 134.44890 134.44890 134.44890  86.39288  86.39288 121.74422 
##       123       137       162       167       168       173       179       183 
## 121.74422 121.74422 134.44890 134.44890 134.44890 134.44890 134.44890  99.09756 
##       188       195       197       204       205       215       217       218 
## 134.44890  99.09756  84.57192 134.44890 134.44890  99.09756 134.44890  99.09756 
##       220       223       231       239       243       244       245       247 
## 134.44890  99.09756 121.74422 121.74422 121.74422 121.74422 121.74422 121.74422 
##       251       253       254       264       269       277       280       282 
## 121.74422 121.74422  71.86724 121.74422 121.74422 121.74422 121.74422 121.74422 
##       288       290       292       299       303       307       310       313 
##  71.86724  71.86724 121.74422 121.74422 121.74422  71.86724 121.74422 121.74422 
##       315       320       337       341       344       346       351       358 
## 121.74422 134.44890 134.44890 134.44890 134.44890 134.44890 134.44890 121.74422 
##       359       370       376       381       387       388       397 
## 121.74422 121.74422 121.74422  71.86724 121.74422 121.74422  71.86724
mean((Salary$salary - out_MSE_BIC)^2)
## Warning in Salary$salary - out_MSE_BIC: longer object length is not a multiple
## of shorter object length
## [1] 1260.251

model_full out-of-sample: 1343.771 model_step_BIC out-of-sample: 1326.16

The model_step_BIC performs better in prediction than the model_full

End of Exam. Please submit this RMD file along with a knitted HTML report.