# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and compare skewness of your portfolio and its assets.
Choose your stocks.
from 2012-12-31 to 2017-12-31
symbols <- c("TSLA", "NVDA", "GOOGL", "ORCL", "JNJ")
prices <- tq_get(x = symbols,
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type= "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "GOOGL" "JNJ" "NVDA" "ORCL" "TSLA"
# weights
weight <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weight
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weight)
w_tbl
## # A tibble: 5 × 2
## symbols weight
## <chr> <dbl>
## 1 GOOGL 0.25
## 2 JNJ 0.25
## 3 NVDA 0.2
## 4 ORCL 0.2
## 5 TSLA 0.1
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset, returns_col = returns,
weights = w_tbl, rebalance_on = "months", col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0527
## 2 2013-02-28 0.0169
## 3 2013-03-28 0.0146
## 4 2013-04-30 0.0728
## 5 2013-05-31 0.0888
## 6 2013-06-28 -0.00817
## 7 2013-07-31 0.0626
## 8 2013-08-30 -0.00442
## 9 2013-09-30 0.0415
## 10 2013-10-31 0.0361
## # ℹ 50 more rows
portfolio_skew_tidyquant_builtin_percent <- portfolio_returns_tbl %>%
tq_performance(Ra = returns,
performance_fun = table.Stats) %>%
select(Skewness)
portfolio_skew_tidyquant_builtin_percent
## # A tibble: 1 × 1
## Skewness
## <dbl>
## 1 0.275
# Data transformation: calculate skewness
asset_skewness_tbl <- asset_returns_tbl %>%
group_by(asset) %>%
summarise(skew = skewness(returns)) %>%
ungroup() %>%
# Add portfolio skewness
add_row(tibble(asset = "portfolio", skew = skewness(portfolio_returns_tbl$returns)))
asset_skewness_tbl
## # A tibble: 6 × 2
## asset skew
## <chr> <dbl>
## 1 GOOGL 0.867
## 2 JNJ -0.0651
## 3 NVDA 0.899
## 4 ORCL -0.0945
## 5 TSLA 0.944
## 6 portfolio 0.275
# Plot skewness
asset_skewness_tbl %>%
ggplot(aes(x = asset, y = skew, color = asset)) +
geom_point() + geom_text(aes(label = asset), vjust = 1.5, hjust = 0.5, size = 4, data = asset_skewness_tbl %>% filter(asset == "portfolio")) +
labs(y = "skewness") %>% na.omit()
Is any asset in your portfolio more likely to return extreme positive
returns than your portfolio collectively? Discuss in terms of skewness.
You may also refer to the distribution of returns you plotted in Code
along 4.
GOOGL, TSLA and NVDA have extreme positive returns in terms of skewness
in comparison to my full portfolio. My portfolio has just over 0.25,
while those 3 assets are upwards of 0.75, indicating they’re positively
skewed.