# Load packages
# Core
library(tidyverse)
library(tidyquant)
library(PerformanceAnalytics)
library(ggrepel)
Collect individual returns into a portfolio by assigning a weight to each stock
five stocks: “AAPL”, “TSLA”, “JPM”, “MSFT”, “NKE”
from 2012-12-31 to 2017-12-31
symbols <- c("AAPL", "TSLA", "JPM", "MSFT", "NKE")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AAPL" "JPM" "MSFT" "NKE" "TSLA"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AAPL 0.25
## 2 JPM 0.25
## 3 MSFT 0.2
## 4 NKE 0.2
## 5 TSLA 0.1
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl, rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.00469
## 2 2013-02-28 0.00240
## 3 2013-03-28 0.0234
## 4 2013-04-30 0.0892
## 5 2013-05-31 0.0983
## 6 2013-06-28 -0.0261
## 7 2013-07-31 0.0521
## 8 2013-08-30 0.0299
## 9 2013-09-30 0.0420
## 10 2013-10-31 0.0260
## # ℹ 50 more rows
portfolio_skew_tidyquant_builtin_percent <- portfolio_returns_tbl %>%
tq_performance(Ra = returns,
performance_fun = table.Stats) %>%
select(Skewness)
portfolio_skew_tidyquant_builtin_percent
## # A tibble: 1 × 1
## Skewness
## <dbl>
## 1 -0.274
# Calculate sd and mean of portfolio returns
sd_portfolio <- sd(portfolio_returns_tbl$returns)
mean_portfolio <- mean(portfolio_returns_tbl$returns)
portfolio_returns_tbl %>%
# Add a new variable
mutate(extreme_neg = ifelse(returns < mean_portfolio - 2 * sd_portfolio,
"ext_neg",
"not_ext_neg")) %>%
ggplot(aes(x = returns, fill = extreme_neg)) +
geom_histogram(binwidth = 0.003) +
scale_x_continuous(breaks = seq(-0.06, 0.06, 0.02)) +
labs(x = "monthly returns")
# Data transformation: calculate skewness
asset_skewness_tbl <- asset_returns_tbl %>%
group_by(asset) %>%
summarise(skew = skewness(returns)) %>%
ungroup() %>%
# Add portfolio skewness
add_row(tibble(asset = "Portfolio",
skew = skewness(portfolio_returns_tbl$returns)))
asset_skewness_tbl
## # A tibble: 6 × 2
## asset skew
## <chr> <dbl>
## 1 AAPL -0.555
## 2 JPM -0.330
## 3 MSFT 0.0825
## 4 NKE 0.0783
## 5 TSLA 0.944
## 6 Portfolio -0.274
# Plot skewness
asset_skewness_tbl %>%
ggplot(aes(x = asset, y = skew, color = asset)) +
geom_point() +
ggrepel::geom_text_repel(aes(label = asset),
data = asset_skewness_tbl %>%
filter(asset == "Portfolio")) +
labs(y = "Skewness", x = "Asset")
# Transform data: calculate rolling skewness
rolling_skew_tbl <- portfolio_returns_tbl %>%
tq_mutate(select = returns,
mutate_fun = rollapply,
width = 24,
FUN = skewness,
col_rename = "Skew") %>%
select(-returns) %>%
na.omit()
# Plot
rolling_skew_tbl %>%
ggplot(aes(x = date, y = Skew)) +
geom_line(color = "cornflowerblue") +
geom_hline(yintercept = 0, linetype = "dotted", linewidth = 2) +
# Formatting
scale_y_continuous(limits = c(-1,1), breaks = seq(-1,1,0.2)) +
theme(plot.title = element_text(hjust = 0.5)) +
# Labeling
labs(y = "Skewness",
x = NULL,
title = "Rolling 24-Month Skwness")
asset_returns_tbl %>%
ggplot(aes(x = returns)) +
geom_density(aes(color = asset), show.legend = FALSE, alpha = 1) +
geom_histogram(aes(fill = asset), show.legend = FALSE, alpha = 0.4, binwidth = 0.02) +
facet_wrap(~asset, ncol = 1) +
# labeling
labs(title = "Distribution of Monthly Returns, 2012-2017",
y = "Frequency",
x = "Rate of Returns")
yes there are three assets that are more likely to return extreme positives. These assets are TSLA, MSFT, and NKE. These three assets have positive skewness compared to the portfolio which has a negative skewness. TSLA is the most likely to return extreme positives because it has data with a 60% return in a month.