library(dplyr)
## Warning: package 'dplyr' was built under R version 4.4.3
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
1- Create a function named calculate_area_of_circle that takes one parameter, radius, representing the radius of a circle. The function should calculate and return the area using the formula:
area = đťś‹ Ă— radius^2
Test your function with at least two different radii and print the results.
# Function calculate_area_of_circle
calculate_area_of_circle <- function(radius) {
return(pi * (radius^2))
}
calculate_area_of_circle(4)
## [1] 50.26548
calculate_area_of_circle(17)
## [1] 907.9203
2- Write a function called check_temperature that takes a single numeric input temp.
If temp > 30, print “Hot”
If temp >= 15 & temp <= 30, print “Warm”
Otherwise, print “Cold”
Test the function on three different values (e.g., 10, 20, 35).
#check temperature function
check_temperature <- function(temp){
#if condition
if(temp > 30){
return("Hot")
}
#else if condition
else if(temp >= 15 && temp <=30){
return("Warm")
}
#else condition
else{
return("Cold")
}
}
check_temperature(46)
## [1] "Hot"
check_temperature(24)
## [1] "Warm"
check_temperature(9)
## [1] "Cold"
check_temperature(67)
## [1] "Hot"
check_temperature(5)
## [1] "Cold"
check_temperature(18)
## [1] "Warm"
3- Write a function named sum_odd_numbers that uses a for loop to calculate the sum of all odd numbers from 1 to n. The function should return the total sum.
Test the function with n = 9 and n = 39.
# sum_odd_numbers function
sum_odd_numbers <- function(n){
#total variable
total <- 0
#for-loop
for (i in 1:n) {
if(i %% 2 == 1){
total<- total+i
}
}
return(total)
}
sum_odd_numbers(9)
## [1] 25
sum_odd_numbers(39)
## [1] 400
For this section, use the built-in mtcars dataset (instead of airquality). Perform the following:
Check the structure of the dataset.
Display the summary statistics.
Check for any missing values.
Ask a simple question that can be answered with a basic function (e.g., What is the mean miles per gallon (mpg) across all cars?). Write the code and output the answer.
str(mtcars)
## 'data.frame': 32 obs. of 11 variables:
## $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
## $ cyl : num 6 6 4 6 8 6 8 4 4 6 ...
## $ disp: num 160 160 108 258 360 ...
## $ hp : num 110 110 93 110 175 105 245 62 95 123 ...
## $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
## $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
## $ qsec: num 16.5 17 18.6 19.4 17 ...
## $ vs : num 0 0 1 1 0 1 0 1 1 1 ...
## $ am : num 1 1 1 0 0 0 0 0 0 0 ...
## $ gear: num 4 4 4 3 3 3 3 4 4 4 ...
## $ carb: num 4 4 1 1 2 1 4 2 2 4 ...
summary(mtcars)
## mpg cyl disp hp
## Min. :10.40 Min. :4.000 Min. : 71.1 Min. : 52.0
## 1st Qu.:15.43 1st Qu.:4.000 1st Qu.:120.8 1st Qu.: 96.5
## Median :19.20 Median :6.000 Median :196.3 Median :123.0
## Mean :20.09 Mean :6.188 Mean :230.7 Mean :146.7
## 3rd Qu.:22.80 3rd Qu.:8.000 3rd Qu.:326.0 3rd Qu.:180.0
## Max. :33.90 Max. :8.000 Max. :472.0 Max. :335.0
## drat wt qsec vs
## Min. :2.760 Min. :1.513 Min. :14.50 Min. :0.0000
## 1st Qu.:3.080 1st Qu.:2.581 1st Qu.:16.89 1st Qu.:0.0000
## Median :3.695 Median :3.325 Median :17.71 Median :0.0000
## Mean :3.597 Mean :3.217 Mean :17.85 Mean :0.4375
## 3rd Qu.:3.920 3rd Qu.:3.610 3rd Qu.:18.90 3rd Qu.:1.0000
## Max. :4.930 Max. :5.424 Max. :22.90 Max. :1.0000
## am gear carb
## Min. :0.0000 Min. :3.000 Min. :1.000
## 1st Qu.:0.0000 1st Qu.:3.000 1st Qu.:2.000
## Median :0.0000 Median :4.000 Median :2.000
## Mean :0.4062 Mean :3.688 Mean :2.812
## 3rd Qu.:1.0000 3rd Qu.:4.000 3rd Qu.:4.000
## Max. :1.0000 Max. :5.000 Max. :8.000
# created a filtered data frame first so I could only work on cars cylinder and horsepower
my_df <- mtcars|>
select(hp,cyl)
my_df
## hp cyl
## Mazda RX4 110 6
## Mazda RX4 Wag 110 6
## Datsun 710 93 4
## Hornet 4 Drive 110 6
## Hornet Sportabout 175 8
## Valiant 105 6
## Duster 360 245 8
## Merc 240D 62 4
## Merc 230 95 4
## Merc 280 123 6
## Merc 280C 123 6
## Merc 450SE 180 8
## Merc 450SL 180 8
## Merc 450SLC 180 8
## Cadillac Fleetwood 205 8
## Lincoln Continental 215 8
## Chrysler Imperial 230 8
## Fiat 128 66 4
## Honda Civic 52 4
## Toyota Corolla 65 4
## Toyota Corona 97 4
## Dodge Challenger 150 8
## AMC Javelin 150 8
## Camaro Z28 245 8
## Pontiac Firebird 175 8
## Fiat X1-9 66 4
## Porsche 914-2 91 4
## Lotus Europa 113 4
## Ford Pantera L 264 8
## Ferrari Dino 175 6
## Maserati Bora 335 8
## Volvo 142E 109 4
# created the a function called average_four_cyl_hp gets the mean horsepower depending on the cars cylinder
average_four_cyl_hp <- function(data,cyl_num) {
four_cyl <- filter(data, cyl == cyl_num)
avg_hp <- mean(four_cyl$hp)
return(avg_hp)
}
#only can pick 4,6, or 8 because those are the number in the data set
average_four_cyl_hp(my_df,4)
## [1] 82.63636
average_four_cyl_hp(my_df,6)
## [1] 122.2857
average_four_cyl_hp(my_df,8)
## [1] 209.2143
#made to check if my answer was correct for the function
check_answer <- my_df |>
filter(cyl %in% c(8))|>
summarise(mean(hp))
check_answer
## mean(hp)
## 1 209.2143