# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and compare skewness of your portfolio and its assets.
Choose your stocks.
from 2012-12-31 to 2017-12-31
symbols <- c("AMZN", "AAPL", "TSLA", "NFLX", "GOOGL")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull
symbols
## [1] "AAPL" "AMZN" "GOOGL" "NFLX" "TSLA"
weight <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weight
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weight)
w_tbl
## # A tibble: 5 × 2
## symbols weight
## <chr> <dbl>
## 1 AAPL 0.25
## 2 AMZN 0.25
## 3 GOOGL 0.2
## 4 NFLX 0.2
## 5 TSLA 0.1
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.115
## 2 2013-02-28 0.0226
## 3 2013-03-28 0.0107
## 4 2013-04-30 0.0573
## 5 2013-05-31 0.0998
## 6 2013-06-28 -0.0261
## 7 2013-07-31 0.107
## 8 2013-08-30 0.0462
## 9 2013-09-30 0.0585
## 10 2013-10-31 0.0830
## # ℹ 50 more rows
portfolio_skew_tidyquant_builtin_percent <- portfolio_returns_tbl %>%
tq_performance(Ra = returns,
performance_fun = table.Stats) %>%
select(Skewness)
portfolio_skew_tidyquant_builtin_percent
## # A tibble: 1 × 1
## Skewness
## <dbl>
## 1 -0.412
# Calculate sd of portfolio
sd_portfolio <- sd(portfolio_returns_tbl$returns)
mean_portfolio <- mean(portfolio_returns_tbl$returns)
portfolio_returns_tbl %>%
# Add a new variable
mutate(extreme_neg = ifelse(returns < mean_portfolio - 2 * sd_portfolio, "ext_neg", "not_ext_neg")) %>%
ggplot(aes(x = returns, fill = extreme_neg)) +
geom_histogram(binwidth = 0.007) +
scale_x_continuous(breaks = seq(-0.06,0.06,0.02)) +
labs(x = "monthly returns")
# Data transformation: calculate skewness
asset_returns_skew_tbl <- asset_returns_tbl %>%
group_by(asset) %>%
summarise(skew = skewness(returns)) %>%
ungroup() %>%
# skewness of portfolio
add_row(tibble(asset = "Portfolio",
skew = skewness(portfolio_returns_tbl$returns)))
asset_returns_skew_tbl %>%
ggplot(aes(asset, skew, color = asset)) +
geom_point() +
# Add label for portfolio
ggrepel::geom_text_repel(aes(label = asset),
data = asset_returns_skew_tbl %>%
filter(asset == "Portfolio"),
size = 5,
show.legend = FALSE) +
labs(y = "skewness")
Is any asset in your portfolio more likely to return extreme positive returns than your portfolio collectively? Discuss in terms of skewness. You may also refer to the distribution of returns you plotted in Code along 4.
Yes. Some assets like GOOGL, NFLX, and TSLA have positive skewness, meaning they are more likely to experience large positive returns. The portfolio, with negative skewness, is less likely to see extreme gains because diversification smooths out individual asset swings and reduces the impact of outliers.