# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and compare skewness of your portfolio and its assets.
Choose your stocks.
from 2012-12-31 to 2017-12-31
symbols <- c("WMT", "TGT", "AAPL", "NVDA", "GOOG")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AAPL" "GOOG" "NVDA" "TGT" "WMT"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 Ă— 2
## symbols weights
## <chr> <dbl>
## 1 AAPL 0.25
## 2 GOOG 0.25
## 3 NVDA 0.2
## 4 TGT 0.2
## 5 WMT 0.1
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 Ă— 2
## date returns
## <date> <dbl>
## 1 2013-01-31 -0.0157
## 2 2013-02-28 0.0265
## 3 2013-03-28 0.0241
## 4 2013-04-30 0.0335
## 5 2013-05-31 0.0251
## 6 2013-06-28 -0.0372
## 7 2013-07-31 0.0521
## 8 2013-08-30 -0.0148
## 9 2013-09-30 0.0171
## 10 2013-10-31 0.0651
## # ℹ 50 more rows
portfolio_returns_tbl %>%
tq_performance(Ra = returns,
Rb = NULL,
performance_fun = table.Stats) %>%
select(Skewness)
## # A tibble: 1 Ă— 1
## Skewness
## <dbl>
## 1 0.172
# Figure 5.2 Shaded histogram returns ----
portfolio_returns_tbl %>%
# Create a new variable for shade
mutate(returns_extreme_neg = if_else(returns < mean(returns) - 2*sd(returns),
"yes",
"no")) %>%
# Plot
ggplot(aes(returns, fill = returns_extreme_neg)) +
geom_histogram(alpha = .7,
binwidth = .003) +
scale_x_continuous(breaks = scales::pretty_breaks(n = 8)) +
scale_fill_tq() +
labs(x = "monthly returns")
# Figure 5.6 Asset and portfolio skewness comparison ----
asset_returns_skew_tbl <- asset_returns_tbl %>%
# skewness for each asset
group_by(asset) %>%
summarise(skew = skewness(returns)) %>%
ungroup() %>%
# skewness of portfolio
add_row(tibble(asset = "Portfolio",
skew = skewness(portfolio_returns_tbl$returns)))
asset_returns_skew_tbl %>%
ggplot(aes(asset, skew, color = asset)) +
geom_point() +
# Add label for portfolio
ggrepel::geom_text_repel(aes(label = asset),
data = asset_returns_skew_tbl %>%
filter(asset == "Portfolio"),
size = 5,
show.legend = FALSE) +
labs(y = "skewness")
# 3 Rolling skewness ----
# Why rolling skewness?
# To check anything unusual in the portfolio's historical risk
# Assign a value to winder
window <- 24
port_rolling_sd_tbl <- portfolio_returns_tbl %>%
tq_mutate(select = returns,
mutate_fun = rollapply,
width = window,
FUN = skewness,
col_rename = "rolling_skew") %>%
select(date, rolling_skew) %>%
na.omit()
port_rolling_sd_tbl %>%
ggplot(aes(date, rolling_skew)) +
geom_line(color = "cornflowerblue") +
geom_hline(yintercept = 0, linetype = "dotted", size = 2) +
scale_y_continuous(limits = c(-1,1),
breaks = scales::pretty_breaks(n = 10)) +
scale_x_date(breaks = scales::breaks_pretty(n = 7))+
labs(title = paste0("Rolling ", window, "-Month Skew"),
x = NULL,
y = "skewness") +
theme(plot.title = element_text(hjust = 0.5)) +
annotate(geom = "text",
x = as.Date("2016-09-01"), y = 0.7,
color = "red", size = 5,
label = str_glue("The 24-month skewness is positive for about half of the lifetime,
even though the overall skewness is negative"))
Yes, some of the individual stocks in the portfolio, like AAPL and NVDA, are more likely to have very high positive returns compared to the portfolio overall. This is shown by their positive skewness, which means they have a higher chance of big gains. On the other hand, the portfolio has negative skewness, meaning it’s more likely to have large losses than big gains. This happens because combining many stocks in a portfolio reduces both risk and the chance of very high returns from any one stock.