library(tidyverse)
library(openintro)
download.file("http://www.openintro.org/stat/data/ames.RData", destfile = "ames.RData")
load("ames.RData")
Exercise 1
This population distribution has a strong left skew with a deep right
tail. This represents that most home greater living areas are around
1500 square feet, while some very large areas can reach up to 6000
square feet.
# Insert code for Exercise 2 here
area <- ames$Gr.Liv.Area
price <- ames$SalePrice
samp1 <- sample(area, 50)
summary(samp1)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 630 1067 1402 1418 1682 2728

Exercise 2
My sample population has a mean slightly above the total population
mean of 1499. My sample mean was 5% above the total population mean.
This standard error could be considered acceptable, especially since it
was randomly pulled from the total population dataset.
# Insert code for Exercise 2 here
mean(samp1)
## [1] 1417.84
Exercise 3
My second sample mean was 1456, slightly below the total population
mean. This aligns with central limit theorum, with one sample slightly
above and one sample slightly below the total mean. Taking larger
samples of 100 and 1000 would begin generating sample means closer to
the total mean, with a larger dataset representing more of the
population with each repetition.
# Insert code for Exercise 3 here
samp2 <- sample(area, 50)
mean(samp2)
## [1] 1418.8
sample_means50 <- rep(NA, 5000)
for(i in 1:5000){
samp <- sample(area, 50)
sample_means50[i] <- mean(samp)
}
hist(sample_means50)

hist(sample_means50, breaks = 25)

Exercise 4
Insert any text here.
# Insert code for Exercise 4 here
Exercise 5
Insert any text here.
# Insert code for Exercise 5 here
Exercise 6
Insert any text here.
# Insert code for Exercise 6 here
LS0tDQp0aXRsZTogIlNhbXBsaW5nIERpc3RyaWJ1dGlvbnMiDQphdXRob3I6ICJDb2xpbiBIb2ZmbWFuIg0KZGF0ZTogImByIFN5cy5EYXRlKClgIg0Kb3V0cHV0OiBvcGVuaW50cm86OmxhYl9yZXBvcnQNCi0tLQ0KDQpgYGB7ciBsb2FkLXBhY2thZ2VzLCBtZXNzYWdlPUZBTFNFfQ0KbGlicmFyeSh0aWR5dmVyc2UpDQpsaWJyYXJ5KG9wZW5pbnRybykNCmBgYA0KDQpgYGB7ciBsb2FkLWRhdGEsIG1lc3NhZ2UgPSBGQUxTRX0NCmRvd25sb2FkLmZpbGUoImh0dHA6Ly93d3cub3BlbmludHJvLm9yZy9zdGF0L2RhdGEvYW1lcy5SRGF0YSIsIGRlc3RmaWxlID0gImFtZXMuUkRhdGEiKQ0KbG9hZCgiYW1lcy5SRGF0YSIpDQpgYGANCg0KDQojIyMgRXhlcmNpc2UgMQ0KVGhpcyBwb3B1bGF0aW9uIGRpc3RyaWJ1dGlvbiBoYXMgYSBzdHJvbmcgbGVmdCBza2V3IHdpdGggYSBkZWVwIHJpZ2h0IHRhaWwuIFRoaXMgcmVwcmVzZW50cyB0aGF0IG1vc3QgaG9tZSBncmVhdGVyIGxpdmluZyBhcmVhcyBhcmUgYXJvdW5kIDE1MDAgc3F1YXJlIGZlZXQsIHdoaWxlIHNvbWUgdmVyeSBsYXJnZSBhcmVhcyBjYW4gcmVhY2ggdXAgdG8gNjAwMCBzcXVhcmUgZmVldC4gDQpgYGB7ciBjcmVhdGUtdmFyaWFibGVzfQ0KIyBJbnNlcnQgY29kZSBmb3IgRXhlcmNpc2UgMiBoZXJlDQphcmVhIDwtIGFtZXMkR3IuTGl2LkFyZWENCnByaWNlIDwtIGFtZXMkU2FsZVByaWNlDQpzYW1wMSA8LSBzYW1wbGUoYXJlYSwgNTApDQpzdW1tYXJ5KHNhbXAxKQ0KaGlzdChzYW1wMSkNCmBgYA0KDQojIyMgRXhlcmNpc2UgMg0KDQpNeSBzYW1wbGUgcG9wdWxhdGlvbiBoYXMgYSBtZWFuIHNsaWdodGx5IGFib3ZlIHRoZSB0b3RhbCBwb3B1bGF0aW9uIG1lYW4gb2YgMTQ5OS4gTXkgc2FtcGxlIG1lYW4gd2FzIDUlIGFib3ZlIHRoZSB0b3RhbCBwb3B1bGF0aW9uIG1lYW4uIFRoaXMgc3RhbmRhcmQgZXJyb3IgY291bGQgYmUgY29uc2lkZXJlZCBhY2NlcHRhYmxlLCBlc3BlY2lhbGx5IHNpbmNlIGl0IHdhcyByYW5kb21seSBwdWxsZWQgZnJvbSB0aGUgdG90YWwgcG9wdWxhdGlvbiBkYXRhc2V0LiANCg0KYGBge3Igc2FtcGxlLW1lYW59DQojIEluc2VydCBjb2RlIGZvciBFeGVyY2lzZSAyIGhlcmUNCm1lYW4oc2FtcDEpDQpgYGANCg0KIyMjIEV4ZXJjaXNlIDMNCg0KTXkgc2Vjb25kIHNhbXBsZSBtZWFuIHdhcyAxNDU2LCBzbGlnaHRseSBiZWxvdyB0aGUgdG90YWwgcG9wdWxhdGlvbiBtZWFuLiBUaGlzIGFsaWducyB3aXRoIGNlbnRyYWwgbGltaXQgdGhlb3J1bSwgd2l0aCBvbmUgc2FtcGxlIHNsaWdodGx5IGFib3ZlIGFuZCBvbmUgc2FtcGxlIHNsaWdodGx5IGJlbG93IHRoZSB0b3RhbCBtZWFuLiBUYWtpbmcgbGFyZ2VyIHNhbXBsZXMgb2YgMTAwIGFuZCAxMDAwIHdvdWxkIGJlZ2luIGdlbmVyYXRpbmcgc2FtcGxlIG1lYW5zIGNsb3NlciB0byB0aGUgdG90YWwgbWVhbiwgd2l0aCBhIGxhcmdlciBkYXRhc2V0IHJlcHJlc2VudGluZyBtb3JlIG9mIHRoZSBwb3B1bGF0aW9uIHdpdGggZWFjaCByZXBldGl0aW9uLiANCg0KYGBge3Igc2Vjb25kLXNhbXBsZX0NCiMgSW5zZXJ0IGNvZGUgZm9yIEV4ZXJjaXNlIDMgaGVyZQ0Kc2FtcDIgPC0gc2FtcGxlKGFyZWEsIDUwKQ0KbWVhbihzYW1wMikNCmBgYA0KDQoNCmBgYHtyfQ0Kc2FtcGxlX21lYW5zNTAgPC0gcmVwKE5BLCA1MDAwKQ0KDQpmb3IoaSBpbiAxOjUwMDApew0KICAgc2FtcCA8LSBzYW1wbGUoYXJlYSwgNTApDQogICBzYW1wbGVfbWVhbnM1MFtpXSA8LSBtZWFuKHNhbXApDQogICB9DQoNCmhpc3Qoc2FtcGxlX21lYW5zNTApDQpgYGANCmBgYHtyfQ0KaGlzdChzYW1wbGVfbWVhbnM1MCwgYnJlYWtzID0gMjUpDQpgYGANCg0KDQojIyMgRXhlcmNpc2UgNA0KDQpJbnNlcnQgYW55IHRleHQgaGVyZS4NCg0KYGBge3Igc2FtcGxlLW1lYW5zfQ0KIyBJbnNlcnQgY29kZSBmb3IgRXhlcmNpc2UgNCBoZXJlDQpgYGANCg0KDQojIyMgRXhlcmNpc2UgNQ0KDQpJbnNlcnQgYW55IHRleHQgaGVyZS4NCg0KYGBge3Igc2FtcGxlLW1lYW5zLWNvbXBhcmV9DQojIEluc2VydCBjb2RlIGZvciBFeGVyY2lzZSA1IGhlcmUNCmBgYA0KDQoNCiMjIyBFeGVyY2lzZSA2DQoNCkluc2VydCBhbnkgdGV4dCBoZXJlLg0KDQpgYGB7ciBzYW1wbGUtc2l6ZS1lZmZlY3R9DQojIEluc2VydCBjb2RlIGZvciBFeGVyY2lzZSA2IGhlcmUNCmBgYA0KDQoNCg==