library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.2 ✔ tibble 3.3.0
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.1.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(pastecs)
##
## Attaching package: 'pastecs'
##
## The following objects are masked from 'package:dplyr':
##
## first, last
##
## The following object is masked from 'package:tidyr':
##
## extract
library("readxl")
HousingData <- read_csv("Table8.csv")
## Rows: 3221 Columns: 272
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (6): source, sumlevel, geoid, name, st, cnty
## dbl (266): T8_est1, T8_est2, T8_est3, T8_est4, T8_est5, T8_est6, T8_est7, T8...
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
cor(HousingData %>% select(T8_est69, T8_est3))
## T8_est69 T8_est3
## T8_est69 1.0000000 0.8999879
## T8_est3 0.8999879 1.0000000
This is comparing owner occupied housing vs renter occupied that has less than or equal to 30% HAMFI
pairs(HousingData %>% select(T8_est69, T8_est3),
main = "Scatterplot of CHAS Table 8 Variables")
cor.test(HousingData$T8_est69, HousingData$T8_est3, method = "kendall")
##
## Kendall's rank correlation tau
##
## data: HousingData$T8_est69 and HousingData$T8_est3
## z = 66.232, p-value < 2.2e-16
## alternative hypothesis: true tau is not equal to 0
## sample estimates:
## tau
## 0.7804627
I chose Kendall’s Tau test because it makes fewer assumptions than the others. These results (high correlation with very low margin of error) means that there is a significant, positive correlation between the data for renter vs owner households, but it is not exactly the same either.