# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and compare skewness of your portfolio and its assets.
Choose your stocks.
from 2012-12-31 to 2017-12-31
symbols <- c("META", "NFLX", "AMD", "GOOGL", "NVDA")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_table <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_table %>% distinct(asset) %>% pull()
symbols
## [1] "AMD" "GOOGL" "META" "NFLX" "NVDA"
# weights
weights <- c(0.2, 0.2, 0.2, 0.2, 0.2)
weights
## [1] 0.2 0.2 0.2 0.2 0.2
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AMD 0.2
## 2 GOOGL 0.2
## 3 META 0.2
## 4 NFLX 0.2
## 5 NVDA 0.2
portfolio_returns_tbl <- asset_returns_table %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.175
## 2 2013-02-28 0.0109
## 3 2013-03-28 -0.00570
## 4 2013-04-30 0.0847
## 5 2013-05-31 0.0748
## 6 2013-06-28 -0.00955
## 7 2013-07-31 0.0991
## 8 2013-08-30 0.0203
## 9 2013-09-30 0.104
## 10 2013-10-31 0.00970
## # ℹ 50 more rows
portfolio_skew_tidyquant_builtin_percent <- portfolio_returns_tbl %>%
tq_performance(Ra = returns,
performance_fun = table.Stats) %>%
select(Skewness)
portfolio_skew_tidyquant_builtin_percent
## # A tibble: 1 × 1
## Skewness
## <dbl>
## 1 0.08
# Calculate sd of portfolio
sd_portfolio <- sd(portfolio_returns_tbl$returns)
mean_portfolio <- mean(portfolio_returns_tbl$returns)
portfolio_returns_tbl %>%
# Add a new variable
mutate(extreme_neg = ifelse(returns < mean_portfolio - 2 * sd_portfolio, "ext_neg", "not_ext_neg")) %>%
ggplot(aes(x = returns, fill = extreme_neg)) +
geom_histogram(binwidth = 0.007) +
scale_x_continuous(breaks = seq(-0.06,0.06,0.02)) +
labs(x = "monthly returns")
# Data transformation: calculate skewness
asset_skewness_tbl <- asset_returns_table %>%
group_by(asset) %>%
summarise(skew = skewness(returns)) %>%
ungroup() %>%
# Add portfolio skewness
add_row(tibble(asset = "Portfolio",
skew = skewness(portfolio_returns_tbl$returns)))
asset_skewness_tbl
## # A tibble: 6 × 2
## asset skew
## <chr> <dbl>
## 1 AMD 0.293
## 2 GOOGL 0.867
## 3 META 1.15
## 4 NFLX 0.909
## 5 NVDA 0.899
## 6 Portfolio 0.0800
# Plot skewness
asset_skewness_tbl %>%
ggplot(aes(x = asset, y = skew, color = asset)) +
geom_point() +
geom_text(aes(label = asset),
vjust = 1.5, # Nudges labels down
hjust = 0.5, # Centers labels horizontally
size = 4, # Sets text size
data = asset_skewness_tbl %>%
filter(asset == "Portfolio")) +
labs(y = "skewness")
Is any asset in your portfolio more likely to return extreme positive returns than your portfolio collectively? Discuss in terms of skewness. You may also refer to the distribution of returns you plotted in Code along 4.
Answer: The portfolio itself had a very small positive skewness of about 0.075; this would indicate that the skewness of returns is fairly parallel overall. META was the only asset in the portfolio that represented the potential for extreme positive returns given the fact that it had a skewness of around 1.18. AMD had the least potential with a skewness of just below 0.3, informing me that its distribution of returns fell within parallel margins. Lastly, GOOGL, NFLX, and NVDA all had moderately positive skewness of around 0.9.