Question number 1

For the latin square, the latin letter (ingredients) should not repeat in each row and each column. Here the 5 ingredients appear once in each row and each column.

Question number 2

The model equation is:

\(X_{ij} = \mu + \tau_{i} +\beta_{j} + \alpha_{k} +\epsilon_{ijk}\)

where,

\(X{ij}\) = observations

\(\mu\) = grand mean

\(\tau_{i}\)= effect of i

\(\beta_{j}\)= first block factor

\(\alpha_{k}\)= second block factor

\(\epsilon_{ijk}\) = random error

The required hypothesis is :

\(H\_{0}:\tau\_{i}=0\)

\(H_{0}:\tau_{i} \neq 0\)

Question number 3

df<-expand.grid(seq(1,5),seq(1,5))

colnames(df)<-c("Day","Batch") 
df$Day<-as.factor(df$Day)             
df$Batch<-as.factor(df$Batch)  

df$Ingredient<-c("A","B","D","C","E",
                 "C","E","A","D","B",
                 "B","A","C","E","D",
                 "D","C","E","B","A",
                 "E","D","B","A","C")
df$Response<-c(8,7,1,7,3,
               11,2,7,3,8,
               4,9,10,1,5,
               6,8,6,6,10,
               4,2,3,8,8)

df$Ingredient <- as.factor(df$Ingredient)

str(df) 
## 'data.frame':    25 obs. of  4 variables:
##  $ Day       : Factor w/ 5 levels "1","2","3","4",..: 1 2 3 4 5 1 2 3 4 5 ...
##  $ Batch     : Factor w/ 5 levels "1","2","3","4",..: 1 1 1 1 1 2 2 2 2 2 ...
##  $ Ingredient: Factor w/ 5 levels "A","B","C","D",..: 1 2 4 3 5 3 5 1 4 2 ...
##  $ Response  : num  8 7 1 7 3 11 2 7 3 8 ...
##  - attr(*, "out.attrs")=List of 2
##   ..$ dim     : int [1:2] 5 5
##   ..$ dimnames:List of 2
##   .. ..$ Var1: chr [1:5] "Var1=1" "Var1=2" "Var1=3" "Var1=4" ...
##   .. ..$ Var2: chr [1:5] "Var2=1" "Var2=2" "Var2=3" "Var2=4" ...
model <- lm(Response~Batch+Day+Ingredient, data = df) 
aov <- aov(model)
summary(aov)
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## Batch        4  15.44    3.86   1.235 0.347618    
## Day          4  12.24    3.06   0.979 0.455014    
## Ingredient   4 141.44   35.36  11.309 0.000488 ***
## Residuals   12  37.52    3.13                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Here, the p-value of the factor of interest i.e. ingredient (0.000488) is less than the value of alpha(0.05). So, we reject null hypothesis.