Question1: Latin Square Analysis

We believe that it is a valid Latin Square because it has two sources of variability, which is the number of days and batches. The observations are not repeating, which include both rows and columns.

Question 2: Model Equation

\(X_{ij}=\mu+\tau_i+\varepsilon_{ijk}+\beta_j+\alpha_k\)

Null Hypothesis:

\(H_{0}:\tau _{i}=0\)

Alternating Hypothesis:

\(H_{a}:\tau _{i}\neq 0\)

Question 3:

df<-expand.grid(seq(1,5),seq(1,5))
colnames(df)<-c("Day","Batch")
df$Day<-as.factor(df$Day)        
df$Batch<-as.factor(df$Batch)
str(df)
## 'data.frame':    25 obs. of  2 variables:
##  $ Day  : Factor w/ 5 levels "1","2","3","4",..: 1 2 3 4 5 1 2 3 4 5 ...
##  $ Batch: Factor w/ 5 levels "1","2","3","4",..: 1 1 1 1 1 2 2 2 2 2 ...
##  - attr(*, "out.attrs")=List of 2
##   ..$ dim     : int [1:2] 5 5
##   ..$ dimnames:List of 2
##   .. ..$ Var1: chr [1:5] "Var1=1" "Var1=2" "Var1=3" "Var1=4" ...
##   .. ..$ Var2: chr [1:5] "Var2=1" "Var2=2" "Var2=3" "Var2=4" ...
df$Ingredient<-c("A","B","D","C","E",
                 "C","E","A","D","B",
                 "B","A","C","E","D",
                 "D","C","E","B","A",
                 "E","D","B","A","C")
df$Response<-c(8,7,1,7,3,
               11,2,7,3,8,
               4,9,10,1,5,
               6,8,6,6,10,
               4,2,3,8,8)
df
##    Day Batch Ingredient Response
## 1    1     1          A        8
## 2    2     1          B        7
## 3    3     1          D        1
## 4    4     1          C        7
## 5    5     1          E        3
## 6    1     2          C       11
## 7    2     2          E        2
## 8    3     2          A        7
## 9    4     2          D        3
## 10   5     2          B        8
## 11   1     3          B        4
## 12   2     3          A        9
## 13   3     3          C       10
## 14   4     3          E        1
## 15   5     3          D        5
## 16   1     4          D        6
## 17   2     4          C        8
## 18   3     4          E        6
## 19   4     4          B        6
## 20   5     4          A       10
## 21   1     5          E        4
## 22   2     5          D        2
## 23   3     5          B        3
## 24   4     5          A        8
## 25   5     5          C        8
df$Ingredient<-as.factor(df$Ingredient)
aov.model<-aov(df$Response ~ df$Ingredient)
summary(aov.model)
##               Df Sum Sq Mean Sq F value   Pr(>F)    
## df$Ingredient  4  141.4   35.36   10.85 7.67e-05 ***
## Residuals     20   65.2    3.26                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Overall Conclusion:

The null hypothesis is rejected because the p-value (7.67e-05) is much less than alpha. The different ingredients have certain effects on the reaction time of the chemical reactions.