#Data Entry
df<-expand.grid(seq(1,5),seq(1,5))
colnames(df)<-c("Day","Batch")
df$Day<-as.factor(df$Day)
df$Batch<-as.factor(df$Batch)
str(df)
## 'data.frame': 25 obs. of 2 variables:
## $ Day : Factor w/ 5 levels "1","2","3","4",..: 1 2 3 4 5 1 2 3 4 5 ...
## $ Batch: Factor w/ 5 levels "1","2","3","4",..: 1 1 1 1 1 2 2 2 2 2 ...
## - attr(*, "out.attrs")=List of 2
## ..$ dim : int [1:2] 5 5
## ..$ dimnames:List of 2
## .. ..$ Var1: chr [1:5] "Var1=1" "Var1=2" "Var1=3" "Var1=4" ...
## .. ..$ Var2: chr [1:5] "Var2=1" "Var2=2" "Var2=3" "Var2=4" ...
df$Ingredient<-c("A","B","C","D","E",
"C","E","A","D","B",
"B","A","C","E","D",
"D","C","E","B","A",
"E","D","B","A","C")
df$Response<-c(8,7,1,7,3,
11,2,7,3,8,
4,9,10,1,5,
6,8,6,6,10,
4,2,3,8,8)
df$Ingredient<-as.factor(df$Ingredient)
#Analyze the problem using ANOVA
aov.model<-aov(Response~Ingredient, data=df)
summary(aov.model)
## Df Sum Sq Mean Sq F value Pr(>F)
## Ingredient 4 91.04 22.76 3.938 0.0162 *
## Residuals 20 115.60 5.78
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Comment: After running the data through Anova, we found out that the P-value (0.0162) was less than the alpha(0.05), hence we reject \(H_0\).