# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize expected returns and risk to make it easier to compare the performance of multiple assets and portfolios.
Choose your stocks.
from 2012-12-31 to 2017-12-31
# Stocks
symbols <- c("TSLA", "NVDA", "AAPL", "MSFT", "AMZN")
# Prices
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
asset_returns_tbl
## # A tibble: 300 × 3
## asset date returns
## <chr> <date> <dbl>
## 1 AAPL 2013-01-31 -0.156
## 2 AAPL 2013-02-28 -0.0256
## 3 AAPL 2013-03-28 0.00285
## 4 AAPL 2013-04-30 0.000271
## 5 AAPL 2013-05-31 0.0222
## 6 AAPL 2013-06-28 -0.126
## 7 AAPL 2013-07-31 0.132
## 8 AAPL 2013-08-30 0.0804
## 9 AAPL 2013-09-30 -0.0217
## 10 AAPL 2013-10-31 0.0920
## # ℹ 290 more rows
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AAPL" "AMZN" "MSFT" "NVDA" "TSLA"
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AAPL 0.25
## 2 AMZN 0.25
## 3 MSFT 0.2
## 4 NVDA 0.2
## 5 TSLA 0.1
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl, rebalance_on = "months")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date portfolio.returns
## <date> <dbl>
## 1 2013-01-31 -0.00905
## 2 2013-02-28 -0.00315
## 3 2013-03-28 0.0196
## 4 2013-04-30 0.0666
## 5 2013-05-31 0.103
## 6 2013-06-28 -0.0225
## 7 2013-07-31 0.0651
## 8 2013-08-30 0.0419
## 9 2013-09-30 0.0447
## 10 2013-10-31 0.0497
## # ℹ 50 more rows
portfolio_sd_tidyquant_builtin_percent <- portfolio_returns_tbl %>%
tq_performance(Ra = portfolio.returns,
performance_fun = table.Stats) %>%
select(Stdev) %>%
mutate(tq_sd = round(Stdev, 4))
portfolio_sd_tidyquant_builtin_percent
## # A tibble: 1 × 2
## Stdev tq_sd
## <dbl> <dbl>
## 1 0.0493 0.0493
# Mean of Portfolio
portfolio_mean_tidyquant_builtin_percent <- mean(portfolio_returns_tbl$portfolio.returns)
portfolio_mean_tidyquant_builtin_percent
## [1] 0.02761418
# Expected Returns vs Risk
sd_mean_tbl <- asset_returns_tbl %>%
group_by(asset) %>%
tq_performance(Ra = returns,
performance_fun = table.Stats) %>%
select(Mean = ArithmeticMean, Stdev) %>%
ungroup() %>%
# Add portfolio sd
add_row(tibble(asset = "Portfolio",
Mean = portfolio_mean_tidyquant_builtin_percent,
Stdev = portfolio_sd_tidyquant_builtin_percent$tq_sd))
sd_mean_tbl
## # A tibble: 6 × 3
## asset Mean Stdev
## <chr> <dbl> <dbl>
## 1 AAPL 0.015 0.0695
## 2 AMZN 0.0257 0.0739
## 3 MSFT 0.0216 0.0589
## 4 NVDA 0.0471 0.0881
## 5 TSLA 0.037 0.145
## 6 Portfolio 0.0276 0.0493
sd_mean_tbl %>%
ggplot(aes(x = Stdev, y = Mean, color = asset)) +
geom_point() +
ggrepel::geom_text_repel(aes(label = asset))
rolling_sd_tbl <- portfolio_returns_tbl %>%
tq_mutate(select = portfolio.returns,
mutate_fun = rollapply,
width = 24,
FUN = sd,
col_rename = "rolling_sd") %>%
na.omit() %>%
select(date, rolling_sd)
rolling_sd_tbl
## # A tibble: 37 × 2
## date rolling_sd
## <date> <dbl>
## 1 2014-12-31 0.0441
## 2 2015-01-30 0.0438
## 3 2015-02-27 0.0452
## 4 2015-03-31 0.0477
## 5 2015-04-30 0.0493
## 6 2015-05-29 0.0466
## 7 2015-06-30 0.0470
## 8 2015-07-31 0.0466
## 9 2015-08-31 0.0473
## 10 2015-09-30 0.0470
## # ℹ 27 more rows
rolling_sd_tbl %>%
ggplot(aes(x = date, y = rolling_sd)) +
geom_line(color = "cornflowerblue") +
# Formatting
scale_y_continuous(labels = scales::percent_format()) +
# Labeling
labs(x = NULL,
y = NULL,
title = "24-Month Rolling Volatility") +
theme(plot.title = element_text(hjust = 0.5))
How should you expect your portfolio to perform relative to its assets in the portfolio? Would you invest all your money in any of the individual stocks instead of the portfolio? Discuss both in terms of expected return and risk.
The portfolio as a whole will perform lower than top performing stock within the portfolio. Although the portfolio will maintian less risk and smoother overall performance compared the stocks as indivuals.