library(tidyverse)
nations <- read.csv("nations.csv")Nations Charts
Load libraries and datasets
head(nations) iso2c iso3c country year gdp_percap population birth_rate neonat_mortal_rate
1 AD AND Andorra 1996 NA 64291 10.9 2.8
2 AD AND Andorra 1994 NA 62707 10.9 3.2
3 AD AND Andorra 2003 NA 74783 10.3 2.0
4 AD AND Andorra 1990 NA 54511 11.9 4.3
5 AD AND Andorra 2009 NA 85474 9.9 1.7
6 AD AND Andorra 2011 NA 82326 NA 1.6
region income
1 Europe & Central Asia High income
2 Europe & Central Asia High income
3 Europe & Central Asia High income
4 Europe & Central Asia High income
5 Europe & Central Asia High income
6 Europe & Central Asia High income
Plot 1
nations <- nations |>
mutate(gdp = (gdp_percap * population) / 1000000000000)nations_4 <- nations |>
filter(country %in% c("China", "Germany", "United States", "Japan"))ggplot(nations_4, aes(x = year, y = gdp, colour = country)) +
geom_line() +
geom_point() +
scale_color_brewer(palette = "Set1", name = "") +
labs(x = "Year", y = "GDP ($ trillion)", title = "China's Rise to Become the Largest Economy") +
theme_minimal()Plot 2
nations2 <- nations |>
group_by(region, year) |>
summarise(gdp = sum(gdp, na.rm = TRUE))ggplot(nations2, aes(x = year, y = gdp, fill = region)) +
geom_area(color = "white") +
scale_fill_brewer(palette = "Set2", name = "Region") +
labs(x="Year", y = "GDP ($ trillion)", title = "GDP by World Bank Region") +
theme_minimal()